Burundi's Historic Contribution to Global Warming Since 1850
Key Insights
Low Per Capita Impact
Burundi's historic per capita impact is about 1.4 tonnes per capita per year, which falls in the low range. This indicates limited historic responsibility for today's warming compared with many countries, even as emissions have grown alongside development needs.
Minimal Share Of Global Warming
Overall warming impact from historic emissions amounts to well over 800 megatonnes, yet this equates to only around 0.02% of the global total. Burundi's contribution to global warming has therefore been small in relative terms.
Land Use Shapes History
About half of the country's historic impact comes from carbon dioxide linked to land use. Emissions rose from the early 1900s to the post‑war era, then fell sharply in the mid‑1960s and have remained relatively steady since, generally around a few megatonnes with occasional higher years. This long-run pattern underscores how land stewardship has driven Burundi's climate footprint.
Methane Growth Since 1960s
Methane accounts for roughly 40% of the historic impact and has climbed from the 1960s, accelerating since the mid‑2000s. Livestock is the largest methane source, with waste and fuel combustion also contributing. As emissions increased in recent decades, methane's warming impact has ramped up accordingly.
Priorities For Clean Development
Given a low per capita rating and a minimal global share, Burundi's priority can be sustainable growth that avoids high‑emission pathways. The biggest levers are land use-protecting and restoring forests-and methane from livestock, where improved practices can curb future impacts while supporting rural livelihoods.
Background
Historic Per Capita Emissions
Historic per capita emissions are a crucial long-period (since 1850), population-weighted (accounting for changing population size) indicator. It shows the contribution of greenhouse gas emissions of a nation per capita per year to the current warming.
The rating scale is:
- Extremely High: above 10 tonnes per capita per year
- Very High: above 7.5 tonnes
- High: above 5 tonnes
- Moderate: above 2.5 tonnes
- Low: above 0 tonnes
- Negative Emissions: under 0
Historically, we don't expect any nation to reach negative emissions. Current warming, or warming targets, like 1.5 °C and 1.7 °C are all based on the fact that there have been human-induced greenhouse gas emissions and there will be some more. It is clear, however, that some nations have had incredibly high historic contributions per capita.
Total Historic Impact
This is the total amount of CO2, CH4, N2O, and F-Gases emissions of a nation from 1850 till 2023 (last available year in the data) expressed in megatonnes of CO2-equivalents. The gases have different atmospheric lifetimes (decay) and warming effects, for this reason we use the GWP100 (100 year time horizon method) to calculate the global warming potential of N2O and F-Gases to express in CO2-equivalents. For CH4, which is a short-term gas, we use the GWP* method to express the historic impact in CO2-equivalents.
Wikipedia: Global Warming PotentialTotal Historic Share
This is a nation's total historic share of global emissions and its contribution to global warming. It is an indicator of historic responsibility. All nations share the responsibility to ensure that developing nations do not copy and repeat the behavior of nations with high historic greenhouse gas emissions, they should not buy into old unsustainable fossil-fuels-based technology, land-use, and infrastructure, rather foster a sustainable and cleaner development.
About the Data
The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases. Population data are also from Global Carbon Project where available, however, for many nations it doesn't have historic population going back to 1850. Those historic gaps are filled with population data from Our World in Data.
The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.
Data Sources
Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.
PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.
Our World in Data Population - Our World in Data
Update cycle: YearlyDelay: 7 monthsCredits: HYDE (2023); Gapminder (2022); UN WPP (2024) – with major processing by Our World in Data