🇨🇻 Cabo Verde's Yearly Greenhouse Gas Emissions in CO₂ Equivalent

Cabo Verde's Yearly Greenhouse Gas Emissions in CO₂ Equivalent

Key Insights

Small Emitter, Late Growth

Since 1850, Cabo Verde's emissions were minimal for more than a century, with notable increases only after the 1970s. Today the profile is dominated by CO2 from fossil fuels, with methane contributing a substantial share and nitrous oxide adding a smaller, steady portion. Land-use emissions hover close to neutral, while fluorinated gases remain minor but have emerged only in the 2000s.

Oil-Driven CO2 Rise

Fossil CO2 was near zero until the 1970s, surged in the late 1970s, dipped briefly in the early 1980s, and then climbed steadily through the 1990s and 2000s. It now sits at just over half a megatonne per year and is still edging upward. Almost all of this comes from oil, underscoring the centrality of liquid fuels in Cabo Verde's historic and current emissions.

Methane And N2O Patterns

Methane rose sharply from the late 1980s to early 1990s and has been broadly stable since, mainly from livestock and waste. With emissions no longer accelerating, the warming impact from methane has eased compared to its rapid growth phase. Nitrous oxide increased through the early 1990s and then stabilized at under 0.1 megatonnes, largely tied to agriculture.

What Matters Next

The current trajectory shows fossil CO2 still rising slightly, methane roughly flat, and nitrous oxide steady. Bending overall emissions will require reversing growth in oil-based CO2 while keeping methane and agricultural N2O on a stable or downward path. Maintaining near-neutral land-use emissions will help lock in gains.

Background

Greenhouse gas emissions from human activities are the main drivers of human-induced warming. In the scientific literature, human-induced emissions are often referred to as anthropogenic emissions.

  • CO2 Fossil Fuels and Industry (CO2 FFI)
  • CO2 Land-Use, Land-Use Change and Forestry (CO2 LULUCF)
  • Methane (CH4)
  • Nitrous oxide (N2O)
  • Fluorinated gases (F-gases)

Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.

Wikipedia: Global Warming Potential

Total Historic Share

Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.

CO2 From Fossil Fuels and Industry

The sources are mostly fossil-fuel combustion emissions from coal, oil, and gas, as well as emissions from industrial processes such as cement production. Cement also absorbs CO2 out of the atmosphere through carbonation, which reduces emissions by about 0.8 Gt per year and is included here.

CO2 From Land-Use, Land-Use Change, and Forestry

The main driver of these emissions is deforestation, which includes logging and forest degradation, as well as other land-use change activities. The emissions also take into account the absorption of CO2 by processes that remove CO2 from the atmosphere, such as afforestation and reforestation. It is the net effect that is indicated here.

Methane (CH4)

Methane emissions are caused by human activities such as rearing livestock, agricultural practices, and fugitive fossil fuel emissions.

Nitrous Oxide (N2O)

Common sources of these emissions are fossil fuel emissions and the agricultural use of synthetic fertilizer and manure.

Fluorinated Gases (F-gases)

Fluorinated gases are a group of gases defined by UNFCCC: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3). Fluorinated gases are also known as halogenated gases.

Wikipedia: Greenhouse Gas Emissions
IPCC: Annual Report 6, 5.2.1 5.2 Historical Trends, Variability and Budgets of CO2, CH4 and N2O

Units and Measures

CO2-equivalent emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.

Wikipedia: Megatonne
Wikipedia: Global warming potential

About the Data

The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.

The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.

Cabo Verde's Yearly Greenhouse Gas Emissions in CO₂ Equivalent