🇪🇨 Ecuador's Progress and Recent Impact

Ecuador's Progress and Recent Impact

Key Insights

Latest Emissions At A Glance

Ecuador emitted 63.6 megatonnes of CO2-equivalent in 2024, about 0.11% of the global total. On a per-person basis, emissions were 3.5 tonnes per capita per year, which falls into the moderate range on our scale. That means emissions remain well above the near‑zero level consistent with a stable climate, even if the country's global share is small.

Emissions Drivers And Composition

Most emissions come from fossil CO2, led overwhelmingly by oil-related sources, with gas and other fuels playing much smaller roles. Methane is the second‑largest contributor, with notable shares from energy-sector leaks as well as livestock; waste-related methane has edged upward while other methane sources have trended down. Land use and forests act as a net sink, offsetting part of national emissions, and this sink has strengthened over the decade.

Ten-Year Emissions Trajectory Compared

Over the last ten years, total emissions declined by an average of 3.46 megatonnes per year, equivalent to a 4.17% yearly drop relative to recent levels. This pace broadly aligns with the 4% per‑year global benchmark compatible with a net‑zero‑by‑2050 path. Within that total, fossil CO2 has inched upward, while methane has eased and land‑use removals have deepened-so the overall decline depends on gains outside fossil CO2.

Actionable Priorities This Decade

To sustain and deepen national reductions at a pace consistent with climate goals, Ecuador should focus first on its largest sources: oil-related CO2, followed by methane from energy systems and livestock. Stabilizing or reversing fossil CO2 growth is essential; capturing fugitive methane and curbing waste emissions can deliver additional cuts. Maintaining and enhancing the land‑use sink is important, while monitoring small but rising F‑gases. With moderate per capita emissions, rapid, substantial reductions in these major sectors are warranted.

Background

Recent per Capita Emissions

The Recent per Capita Emissions are a crucial indicator of a nation's greenhouse gas emissions. They are a fair measure for comparing the emissions of nations, taking into account the size of their populations.

Because any greenhouse gas emissions above 0 cause warming, the per capita emissions shouldn't be judged against the global average; they should be compared based on how far they are above 0. Therefore, our rating scale is:

  • Extremely High: above 10 tonnes per capita per year
  • Very High: above 7.5 tonnes
  • High: above 5 tonnes
  • Moderate: above 2.5 tonnes
  • Low: above 0 tonnes
  • Negative Emissions: under 0

The per capita emissions should be close to zero for each country, indicated here by the green & low areas.

Last Year Emissions

This is the total amount of CO2, CH4, N2O, and F-Gases emissions of a nation in 2023 (last available year in the data) expressed in megatonnes of CO2-equivalents. The gases have different atmospheric lifetimes (decay) and warming effects, for this reason, we use the GWP100 (100 year time horizon method) to calculate the global warming potential of CH4, N2O, and F-Gases to express them in CO2-equivalents.

Wikipedia: Global Warming Potential

Last Year Share

This is a nation's share of the global emissions in 2023 (last available year in the data). For many countries this value can be quite small, especially when compared to nations like United States or China. It is easy and dangerous to jump to the conclusion that small shares of emissions don't matter. They matter as a group. Even small emitters can account for a significant amount of total emissions. Consider the following examples:

  • 24 nations, each between 0.5 and 1.5% of the total emissions, make up 20% of the total emissions.
  • 27 nations, each between 0.5 and 2% of the total emissions, make up 25% of the total emissions.
  • 162 nations with a share below 0.5% make up 15% of the total.
  • 3 nations, make 44% of the total emissions: China, United States and India. However, China and India together have a population of about 2.9 billion.

Per Capita Emissions are therefore the most crucial indicator to represent the impact of a nation regardless of its size.

Yearly Emissions Trend

This is a nation's trend per year over the last 10 years. It is a good indicator of the trajectory of national emissions and can be used as a simple framework to judge a nation's trend vs. international goals:

  • Stop warming around 1.5 °C: All nations together, and each nation, should drop emissions by 17% per year — 8,000 Megatonnes of CO2 Equivalent per Year.
  • To achieve Net Zero in 2050 and to stop warming at ~1.7 °C: All nations should together, and each nation, should drop emissions by 4% per year — 2,100 Megatonnes of CO2 Equivalent per Year.
  • Additionally, to return warming to pre-industrial levels almost all human-induced CO2 has to be taken out of the atmosphere.

About the Data

The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases. Population data are also from Global Carbon Project where available, however, for many nations it doesn't have historic population going back to 1850. Those historic gaps are filled with population data from Our World in Data.

The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.

Our World in Data Population - Our World in Data
Update cycle: YearlyDelay: 7 monthsCredits: HYDE (2023); Gapminder (2022); UN WPP (2024) – with major processing by Our World in Data

Ecuador's Progress and Recent Impact