Beta

🇬🇳 Guinea's Sources of CO₂ Emissions

Guinea's Sources of CO2 Emissions

✨ Key Insights

Colonial Era and Early Industrialization

The establishment of French colonial rule in 1898 marked the beginning of significant infrastructure development in Guinea, including railways and roads. This period likely saw an increase in CO₂ emissions due to deforestation and the use of coal-powered transportation, although specific data from this era is sparse. The introduction of industrial activities during this time set the stage for future emissions growth.

Post-Independence Industrial Growth

Following Guinea's independence in 1958, the country embarked on a path of industrialization, particularly in the mining sector. The expansion of bauxite mining in the 1970s and subsequent decades contributed to rising CO₂ emissions, driven by energy-intensive processes and increased fossil fuel use. The completion of the Kinkon Hydroelectric Dam in 1963 marked a shift towards renewable energy, but the overall impact on emissions was limited by the scale of mining activities.

Economic Reforms and Emissions Fluctuations

The military coup in 1984 and subsequent economic reforms led to increased foreign investment in mining and agriculture, further boosting CO₂ emissions. The expansion of the Sangarédi mine in 1995 and the Boké mining boom in 2016 exemplify the ongoing reliance on fossil fuels for economic growth. However, Guinea's accession to the Kyoto Protocol in 2000 and the implementation of renewable energy policies in 2018 indicate a growing commitment to reducing emissions.

Recent Trends and Future Prospects

In recent years, Guinea has made strides towards sustainable energy, with renewable energy projects launched in 2010 and a surge in green energy investments in 2023. The COVID-19 pandemic in 2020 temporarily reduced emissions due to decreased economic activity, highlighting the link between industrial output and emissions. As Guinea continues to invest in cleaner energy sources, the long-term outlook suggests a gradual reduction in CO₂ emissions, aligning with global efforts to combat climate change.

Background

The chart shows a national breakdown by source of the yearly CO2 emissions from human activities and processes expressed in megatonnes. It is critical to know and track the sources of national CO2 emissions in order to understand their individual impacts on climate change.

The sources of human CO2 emissions are

  • CO2 From Fossil Fuels and Industry: coal, oil, gas combustion, other fossil processes
  • CO2 From Land-Use, Land-Use Change, and Forestry

Coal, oil and gas combustion

Fossil fuel CO2 emissions from the combustion of coal, oil and gas are emitted by processes in electricity generation, transport, industry, and the building sector. All processes can be linked to human activities. Examples include driving cars with combustion engines burning diesel or gas, or electric cars charged by electricity from a power plant that burns coal.

Other fossil processes

Fossil CO2 emissions from other processes include sources like cement manufacturing and production of chemicals and fertilizers. Cement also has an absorption factor highlighted in the absorption breakdown chart.

Land-use change

Human civilization emits CO2 by changing and managing its land. Those emissions come, for example, from deforestation, logging, forest degradation, harvest activities and shifting agriculture cultivation. Land-use change also absorbs considerable amounts of CO2, which is shown in the absorption breakdown chart. Land-use change emits more than it absorbs, so the net effect is still emissions, but less than for coal, oil and gas.

Wikipedia: Greenhouse Gas Emissions
Earth System Science Data: GCP 2020 paper: Section 2.2 Land-use change; Section 2.1 Fossil fuel emissions
IPCC: Annual Report 6, 5.2.1.1 Anthropogenic CO2 emissions

Units and Measures

CO2 emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.

Wikipedia: Megatonne
Wikipedia: Global warming potential

Climate Change Intelligence — Powered by You.

If you've found value in Climate Change Tracker, we'd really appreciate your donation. We rely on people like you to keep our platform running.

About the Data

The last available year is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change.

The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.