Jordan's Sources of CH4 Emissions
✨ Key Insights
Early Developments and Independence
Jordan's journey in managing methane emissions began modestly, with early emissions primarily from livestock and waste. The establishment of the Emirate of Transjordan in 1921 and subsequent independence in 1946 marked the start of modern economic activities, leading to increased emissions due to urbanization and industrialization. However, the overall impact remained limited due to the country's small size and population.
Population Growth and Economic Changes
The Six-Day War in 1967 and the influx of refugees from neighboring conflicts significantly increased Jordan's population, leading to heightened demand for housing and infrastructure. This period saw a rise in methane emissions, particularly from waste and livestock, as agricultural practices intensified to meet the needs of the growing population. The economic crisis in 1989 further spurred industrial growth, contributing to increased emissions.
Recent Trends and Environmental Commitments
In recent decades, Jordan has experienced notable increases in methane emissions, particularly from waste management. The Syrian Civil War in 2011 exacerbated this trend, as the refugee crisis strained resources and infrastructure. However, Jordan's commitment to the Paris Agreement in 2015 marked a significant policy shift towards sustainable development. The country's investment in renewable energy initiatives since 2007 aims to curb emissions, setting the stage for future reductions and a more sustainable environmental trajectory.
Background
The chart shows a national breakdown by source of the yearly methane (CH4) emissions from human activities expressed as weight in megatonnes (Mt). In the scientific literature, these are referred to as anthropogenic emissions. Human-induced methane emissions increase atmospheric methane, which is warming the Earth. The sources of human methane emissions are
- Livestock
- Fugitive emissions from the fossil fuel industry
- Crop production
- Fossil fuel combustion
- Waste management
- Other processes
Methane's Global Warming Potential
Methane has a much higher Global Warming Potential (GWP) than CO2. However, the effect lasts only for a relatively brief period (9 years on average), compared to hundreds of years for CO2. A reduction in emissions can cause a rapid decline in its atmospheric levels and climate impact.
Livestock
Livestock emits methane that is produced in the animals' digestive system. Most methane is emitted from the mouth during rumination. A much smaller amount of methane is emitted from the manure. Depending on how the manure is managed, i.e., wet or dry, more methane is emitted. Wet management leads to higher methane emissions than dry management. However, dry management also emits nitrous oxide (N2O), which is another potent greenhouse gas.
Fugitive emissions from fossil fuel industry
Fugitive methane emissions are from the intentional and accidental release of methane, which happens during the extraction, storage, and transportation processes in the fossil fuel industry. Examples are methane leaks during oil and gas handling, storage, transport, incomplete combustion, and many more. Also, methane is deliberately ventilated from mines during the extraction of coal.
Methane is a primary part of “gas”, also called “natural gas” or “fossil gas”. Natural gas is used, for example, for heating and electricity generation, whereby it emits CO2 during the combustion process. However, when natural gas leaks (unburned) it contains a lot of fugitive methane emissions.
Waste
Waste from landfills and wastewater produces a lot of methane when biodegradable material breaks down without oxygen.
Crop production
Crop production emissions are largely from rice cultivation, which generates large amounts of methane during plant growth. These emissions are from flooded paddies, which create the swamp-like environment of rice fields. There are agricultural techniques to reduce emissions significantly, like periodic drainage and aeration. Rice is the main staple for about half the world's population, and its emissions are a significant part of total human methane emissions.
Fuel combustion
Fuel combustion emissions are mostly from the incomplete combustion of fossil fuels. As mentioned before, natural gas consists largely of methane, and when the combustion does not happen completely, methane enters the atmosphere.
Other
Other human-induced methane emissions include industrial processes and product uses.
Wikipedia: Anthropogenic Sources of Atmospheric MethaneIPCC: AR6, 5.2.2.2 Anthropogenic CH4 emissions
Units and Measures
CH4 emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.
Wikipedia: MegatonneWikipedia: Global warming potential
About the Data
The last available year in all the emission datasets is 2023. Methane emissions come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.
The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.
Data Sources
PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.