🇱🇦 Lao People's Democratic Republic's Progress and Recent Impact

Lao People's Democratic Republic's Progress and Recent Impact

Key Insights

Big-Picture Emissions Snapshot

Lao People's Democratic Republic emitted 61.4 megatonnes of CO2‑equivalents in the latest year, a small global share at 0.11%. However, the country's 7.9 tonnes per capita per year places it in the very high range, indicating emissions that are substantial relative to population even if the national total is modest globally.

What Drives The Total

Emissions are led by carbon dioxide from energy and industrial fossil fuel use alongside CO2 from land use and land-use change, which together make up the majority of the total. Within fossil CO2, coal is the dominant source, with oil a smaller contributor. Methane contributes a notable share, primarily from livestock, with additional emissions from energy-related leaks. Nitrous oxide is smaller overall and largely agricultural.

Decade-Long Trend Signals

Over the past decade, total emissions declined by about 1.45 megatonnes per year, roughly a 2.19% yearly drop relative to the recent decade's average. This net decline reflects contrasting movements: fossil CO2 has been trending upward-especially coal and other fossil uses-while land-use CO2 has been falling markedly. Methane has edged up slightly and nitrous oxide has risen modestly. The overall pace of decline is slower than the 4% per year benchmark often cited for a net‑zero‑by‑2050 trajectory.

Actionable Priorities Now

To bring very high per capita emissions down rapidly, prioritize curbing fossil CO2-particularly coal-and halting growth in other fossil sources. Sustain and accelerate the decline in land‑use CO2. Target methane by addressing livestock intensity and fast‑rising fugitive emissions, and keep oil-related emissions on a downward path while monitoring agricultural nitrous oxide. These steps would reinforce the current decline and move closer to the pace needed for global goals.

Background

Recent per Capita Emissions

The Recent per Capita Emissions are a crucial indicator of a nation's greenhouse gas emissions. They are a fair measure for comparing the emissions of nations, taking into account the size of their populations.

Because any greenhouse gas emissions above 0 cause warming, the per capita emissions shouldn't be judged against the global average; they should be compared based on how far they are above 0. Therefore, our rating scale is:

  • Extremely High: above 10 tonnes per capita per year
  • Very High: above 7.5 tonnes
  • High: above 5 tonnes
  • Moderate: above 2.5 tonnes
  • Low: above 0 tonnes
  • Negative Emissions: under 0

The per capita emissions should be close to zero for each country, indicated here by the green & low areas.

Last Year Emissions

This is the total amount of CO2, CH4, N2O, and F-Gases emissions of a nation in 2023 (last available year in the data) expressed in megatonnes of CO2-equivalents. The gases have different atmospheric lifetimes (decay) and warming effects, for this reason, we use the GWP100 (100 year time horizon method) to calculate the global warming potential of CH4, N2O, and F-Gases to express them in CO2-equivalents.

Wikipedia: Global Warming Potential

Last Year Share

This is a nation's share of the global emissions in 2023 (last available year in the data). For many countries this value can be quite small, especially when compared to nations like United States or China. It is easy and dangerous to jump to the conclusion that small shares of emissions don't matter. They matter as a group. Even small emitters can account for a significant amount of total emissions. Consider the following examples:

  • 24 nations, each between 0.5 and 1.5% of the total emissions, make up 20% of the total emissions.
  • 27 nations, each between 0.5 and 2% of the total emissions, make up 25% of the total emissions.
  • 162 nations with a share below 0.5% make up 15% of the total.
  • 3 nations, make 44% of the total emissions: China, United States and India. However, China and India together have a population of about 2.9 billion.

Per Capita Emissions are therefore the most crucial indicator to represent the impact of a nation regardless of its size.

Yearly Emissions Trend

This is a nation's trend per year over the last 10 years. It is a good indicator of the trajectory of national emissions and can be used as a simple framework to judge a nation's trend vs. international goals:

  • Stop warming around 1.5 °C: All nations together, and each nation, should drop emissions by 17% per year — 8,000 Megatonnes of CO2 Equivalent per Year.
  • To achieve Net Zero in 2050 and to stop warming at ~1.7 °C: All nations should together, and each nation, should drop emissions by 4% per year — 2,100 Megatonnes of CO2 Equivalent per Year.
  • Additionally, to return warming to pre-industrial levels almost all human-induced CO2 has to be taken out of the atmosphere.

About the Data

The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases. Population data are also from Global Carbon Project where available, however, for many nations it doesn't have historic population going back to 1850. Those historic gaps are filled with population data from Our World in Data.

The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.

Our World in Data Population - Our World in Data
Update cycle: YearlyDelay: 7 monthsCredits: HYDE (2023); Gapminder (2022); UN WPP (2024) – with major processing by Our World in Data

Lao People's Democratic Republic (the)'s Progress and Recent Impact