Mexico's Sources of CO2 Emissions
✨ Key Insights
Early 20th Century Shifts
In the early 20th century, Mexico's CO2 emissions were significantly influenced by the Mexican Revolution, which began in 1910. This period of upheaval likely caused a temporary dip in emissions due to reduced industrial activity. However, the subsequent rebuilding efforts and the nationalization of the oil industry in 1938 under President Lázaro Cárdenas marked a turning point. The creation of PEMEX led to increased domestic oil production, contributing to a rise in CO2 emissions from fossil fuels.
Mid-Century Agricultural and Oil Expansion
The mid-20th century saw further increases in emissions, driven by the Green Revolution in the 1960s and the discovery of the Cantarell oil field in 1974. The introduction of high-yield crops and modern agricultural techniques boosted productivity but also increased emissions due to intensified land use. Meanwhile, the Cantarell oil field significantly boosted Mexico's oil production, further elevating CO2 emissions from extraction and consumption.
Recent Trends and Reforms
In recent decades, Mexico's emissions have been shaped by various factors, including the implementation of NAFTA in 1994, which increased industrial activity and emissions. Energy reforms in 2006 and 2013 aimed to promote renewable energy, but the continued reliance on fossil fuels limited their impact. The COVID-19 pandemic in 2020 temporarily reduced emissions due to decreased industrial activity, but levels likely rebounded as economic activities resumed. Overall, Mexico's emissions history reflects a complex interplay of industrial growth, energy policies, and global events.
Background
The chart shows a national breakdown by source of the yearly CO2 emissions from human activities and processes expressed in megatonnes. It is critical to know and track the sources of national CO2 emissions in order to understand their individual impacts on climate change.
The sources of human CO2 emissions are
- CO2 From Fossil Fuels and Industry: coal, oil, gas combustion, other fossil processes
- CO2 From Land-Use, Land-Use Change, and Forestry
Coal, oil and gas combustion
Fossil fuel CO2 emissions from the combustion of coal, oil and gas are emitted by processes in electricity generation, transport, industry, and the building sector. All processes can be linked to human activities. Examples include driving cars with combustion engines burning diesel or gas, or electric cars charged by electricity from a power plant that burns coal.
Other fossil processes
Fossil CO2 emissions from other processes include sources like cement manufacturing and production of chemicals and fertilizers. Cement also has an absorption factor highlighted in the absorption breakdown chart.
Land-use change
Human civilization emits CO2 by changing and managing its land. Those emissions come, for example, from deforestation, logging, forest degradation, harvest activities and shifting agriculture cultivation. Land-use change also absorbs considerable amounts of CO2, which is shown in the absorption breakdown chart. Land-use change emits more than it absorbs, so the net effect is still emissions, but less than for coal, oil and gas.
Wikipedia: Greenhouse Gas EmissionsEarth System Science Data: GCP 2020 paper: Section 2.2 Land-use change; Section 2.1 Fossil fuel emissions
IPCC: Annual Report 6, 5.2.1.1 Anthropogenic CO2 emissions
Units and Measures
CO2 emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.
Wikipedia: MegatonneWikipedia: Global warming potential
About the Data
The last available year is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change.
The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.
Data Sources
Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.