🇲🇦 Morocco's Yearly Greenhouse Gas Emissions in CO₂ Equivalent

Morocco's Yearly Greenhouse Gas Emissions in CO₂ Equivalent

Key Insights

A Mixed Emissions Legacy

Since 1850, Morocco's warming impact has been led by methane (just over 40%), followed by CO2 from fossil fuels (about a third). Land-use CO2 accounts for around 15% historically but has shifted toward net absorption in recent decades. Nitrous oxide contributes under 10%, while fluorinated gases remain a tiny share.

Fossil CO2 Rises, Then Slows

Fossil CO2 stayed low until rapid growth from the late 1960s to the 2000s. Since the late 2000s, the rise has slowed but continued, reaching around 70 megatonnes recently. Oil has been the dominant source with steady gains since the 2000s, while coal expanded through the 1990s, dipped around 2010, and then climbed again through the 2010s.

Methane’s Growing Weight

Methane emissions have climbed steadily-from low levels mid-century to around 30 megatonnes today-with faster increases since the turn of the century. About half comes from livestock and around two-fifths from waste, both trending upward. As emissions accelerated, methane's warming impact increased more quickly too.

Land And Nitrous Oxide Trends

Land-use emissions rose through the mid-20th century but have declined since the late 1950s, fluctuating around zero and showing net absorption in recent years. Nitrous oxide was relatively stable for decades, then trended upward from the 1980s to around 9 megatonnes, mostly from agriculture.

What Matters Now

Today's trajectory shows fossil CO2, methane, and nitrous oxide still rising. Bending down oil and coal emissions and slowing methane growth from livestock and waste are pivotal, while sustaining land stewardship can preserve emerging CO2 absorption.

Background

Greenhouse gas emissions from human activities are the main drivers of human-induced warming. In the scientific literature, human-induced emissions are often referred to as anthropogenic emissions.

  • CO2 Fossil Fuels and Industry (CO2 FFI)
  • CO2 Land-Use, Land-Use Change and Forestry (CO2 LULUCF)
  • Methane (CH4)
  • Nitrous oxide (N2O)
  • Fluorinated gases (F-gases)

Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.

Wikipedia: Global Warming Potential

Total Historic Share

Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.

CO2 From Fossil Fuels and Industry

The sources are mostly fossil-fuel combustion emissions from coal, oil, and gas, as well as emissions from industrial processes such as cement production. Cement also absorbs CO2 out of the atmosphere through carbonation, which reduces emissions by about 0.8 Gt per year and is included here.

CO2 From Land-Use, Land-Use Change, and Forestry

The main driver of these emissions is deforestation, which includes logging and forest degradation, as well as other land-use change activities. The emissions also take into account the absorption of CO2 by processes that remove CO2 from the atmosphere, such as afforestation and reforestation. It is the net effect that is indicated here.

Methane (CH4)

Methane emissions are caused by human activities such as rearing livestock, agricultural practices, and fugitive fossil fuel emissions.

Nitrous Oxide (N2O)

Common sources of these emissions are fossil fuel emissions and the agricultural use of synthetic fertilizer and manure.

Fluorinated Gases (F-gases)

Fluorinated gases are a group of gases defined by UNFCCC: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3). Fluorinated gases are also known as halogenated gases.

Wikipedia: Greenhouse Gas Emissions
IPCC: Annual Report 6, 5.2.1 5.2 Historical Trends, Variability and Budgets of CO2, CH4 and N2O

Units and Measures

CO2-equivalent emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.

Wikipedia: Megatonne
Wikipedia: Global warming potential

About the Data

The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.

The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.

Morocco's Yearly Greenhouse Gas Emissions in CO₂ Equivalent