Mozambique's Sources of CO2 Emissions
Key Insights
Land Use Drives Emissions
Mozambique's CO2 profile is dominated by land-use change, contributing well over 90% of national emissions and adding up to roughly 2,900 megatonnes over time. Land-use emissions have varied widely, shifting from small net uptake in the early decades to sustained releases as deforestation and land conversion increased.
Mid-Century Rise, 2000s Peak
From the late 1910s to the mid-1950s, land-use emissions rose quickly, reaching around 50 megatonnes per year. After a retreat to roughly 20 by the mid-1970s, they edged up again, then surged from the early 1990s to the mid-2000s, peaking at around 70 before reversing course.
Steep Decline Since Mid-2000s
Since the mid-2000s, land-use emissions have fallen steadily-from over 60 down to around 10 megatonnes by the early 2020s. This marked downturn suggests improved land management or changing pressures, and it has become the defining trend in Mozambique's overall emissions trajectory.
Fossil Fuels Still Modest
Fossil fuel sources remain small by comparison. Oil use has grown since the early 2000s to roughly 5 megatonnes, gas rose after 2008 to around 2, while coal is near zero and fading; other industrial processes hover around 1.
Outlook And Priorities
The dominant source-land-use change-is on a declining path. Sustaining and deepening this progress through forest protection, better land governance, and restoration can lock in reductions and further lower national emissions in the years ahead.
Background
The chart shows a national breakdown by source of the yearly CO2 emissions from human activities and processes expressed in megatonnes. It is critical to know and track the sources of national CO2 emissions in order to understand their individual impacts on climate change.
The sources of human CO2 emissions are
- CO2 From Fossil Fuels and Industry: coal, oil, gas combustion, other fossil processes
- CO2 From Land-Use, Land-Use Change, and Forestry
Coal, oil and gas combustion
Fossil fuel CO2 emissions from the combustion of coal, oil and gas are emitted by processes in electricity generation, transport, industry, and the building sector. All processes can be linked to human activities. Examples include driving cars with combustion engines burning diesel or gas, or electric cars charged by electricity from a power plant that burns coal.
Other fossil processes
Fossil CO2 emissions from other processes include sources like cement manufacturing and production of chemicals and fertilizers. Cement also has an absorption factor highlighted in the absorption breakdown chart.
Land-use change
Human civilization emits CO2 by changing and managing its land. Those emissions come, for example, from deforestation, logging, forest degradation, harvest activities and shifting agriculture cultivation. Land-use change also absorbs considerable amounts of CO2, which is shown in the absorption breakdown chart. Land-use change emits more than it absorbs, so the net effect is still emissions, but less than for coal, oil and gas.
Wikipedia: Greenhouse Gas EmissionsEarth System Science Data: GCP 2020 paper: Section 2.2 Land-use change; Section 2.1 Fossil fuel emissions
IPCC: Annual Report 6, 5.2.1.1 Anthropogenic CO2 emissions
Units and Measures
CO2 emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.
Wikipedia: MegatonneWikipedia: Global warming potential
About the Data
The last available year is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change.
The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.
Data Sources
Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.