Beta

🇳🇷 Nauru's Sources of CH₄ Emissions

Nauru's Sources of CH4 Emissions

✨ Key Insights

Phosphate Mining and Emissions

The history of Nauru's methane emissions is closely tied to its phosphate mining activities. Beginning in 1900, the extraction of phosphate led to significant land-use changes, which likely contributed to increased emissions. However, the data shows that methane emissions from crop production, fuel combustion, and fugitive emissions have remained negligible over the decades.

Livestock and Waste Contributions

From the 1970s onwards, livestock became a notable source of methane emissions in Nauru, albeit at a very low level. The data indicates that livestock emissions have been consistent, with minor fluctuations. Waste management also emerged as a source of emissions in the 2010s, reflecting changes in waste handling practices. Despite these contributions, overall methane emissions have remained minimal.

Decline in Mining and Emissions

The depletion of phosphate reserves around 2000 marked a turning point, leading to a decline in mining activities and associated emissions. This period coincides with a reduction in overall greenhouse gas emissions, as the economic downturn reduced energy consumption. Nauru's shift towards renewable energy initiatives in the mid-2000s further supported this trend, contributing to a gradual decrease in fossil fuel-related emissions.

Background

The chart shows a national breakdown by source of the yearly methane (CH4) emissions from human activities expressed as weight in megatonnes (Mt). In the scientific literature, these are referred to as anthropogenic emissions. Human-induced methane emissions increase atmospheric methane, which is warming the Earth. The sources of human methane emissions are

  • Livestock
  • Fugitive emissions from the fossil fuel industry
  • Crop production
  • Fossil fuel combustion
  • Waste management
  • Other processes

Methane's Global Warming Potential

Methane has a much higher Global Warming Potential (GWP) than CO2. However, the effect lasts only for a relatively brief period (9 years on average), compared to hundreds of years for CO2. A reduction in emissions can cause a rapid decline in its atmospheric levels and climate impact.

Livestock

Livestock emits methane that is produced in the animals' digestive system. Most methane is emitted from the mouth during rumination. A much smaller amount of methane is emitted from the manure. Depending on how the manure is managed, i.e., wet or dry, more methane is emitted. Wet management leads to higher methane emissions than dry management. However, dry management also emits nitrous oxide (N2O), which is another potent greenhouse gas.

Fugitive emissions from fossil fuel industry

Fugitive methane emissions are from the intentional and accidental release of methane, which happens during the extraction, storage, and transportation processes in the fossil fuel industry. Examples are methane leaks during oil and gas handling, storage, transport, incomplete combustion, and many more. Also, methane is deliberately ventilated from mines during the extraction of coal.


Methane is a primary part of “gas”, also called “natural gas” or “fossil gas”. Natural gas is used, for example, for heating and electricity generation, whereby it emits CO2 during the combustion process. However, when natural gas leaks (unburned) it contains a lot of fugitive methane emissions.

Waste

Waste from landfills and wastewater produces a lot of methane when biodegradable material breaks down without oxygen.

Crop production

Crop production emissions are largely from rice cultivation, which generates large amounts of methane during plant growth. These emissions are from flooded paddies, which create the swamp-like environment of rice fields. There are agricultural techniques to reduce emissions significantly, like periodic drainage and aeration. Rice is the main staple for about half the world's population, and its emissions are a significant part of total human methane emissions.

Fuel combustion

Fuel combustion emissions are mostly from the incomplete combustion of fossil fuels. As mentioned before, natural gas consists largely of methane, and when the combustion does not happen completely, methane enters the atmosphere.

Other

Other human-induced methane emissions include industrial processes and product uses.

Wikipedia: Anthropogenic Sources of Atmospheric Methane
IPCC: AR6, 5.2.2.2 Anthropogenic CH4 emissions

Units and Measures

CH4 emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.

Wikipedia: Megatonne
Wikipedia: Global warming potential

Climate Change Intelligence — Powered by You.

If you've found value in Climate Change Tracker, we'd really appreciate your donation. We rely on people like you to keep our platform running.

About the Data

The last available year in all the emission datasets is 2023. Methane emissions come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.

The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.

Data Sources

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.