Nigeria's Sources of CH4 Emissions
Key Insights
Methane Dominates Nigeria’s Warming
Methane accounts for well over half of Nigeria's total warming impact. The source mix is led by fugitive emissions at roughly two‑thirds of national methane, with livestock, fuel combustion, and waste forming most of the remainder. Crop production and other sources are comparatively small.
Fugitive Emissions’ Rise And Fall
From the post‑war era to the late twentieth century, fugitive emissions climbed quickly and then more gradually, peaking in the early 2000s at around 200 megatonnes. Since the turn of the century they have fallen markedly to around 60 megatonnes, a reversal large enough to reshape the national profile and offset part of the growth elsewhere.
Energy Use And Waste Growing
In contrast, emissions from fuel combustion have trended upward for decades, reaching around 40 megatonnes. Waste has accelerated since the early 2000s, rising to about 30 megatonnes. Livestock has also grown steadily from the 1960s onward, now around 40 megatonnes. These steady increases have narrowed, but not erased, the decline from fugitive sources.
What The Trajectory Implies
Today, the dominant sources over 5% show mixed trajectories: fugitive emissions are declining, while livestock, fuel combustion, and waste are still rising. Sustaining and deepening the drop in fugitive emissions is essential, but reversing growth in the other three sectors will be needed to bring total methane down faster and reduce warming more quickly.
Background
The chart shows a national breakdown by source of the yearly methane (CH4) emissions from human activities expressed as weight in megatonnes (Mt). In the scientific literature, these are referred to as anthropogenic emissions. Human-induced methane emissions increase atmospheric methane, which is warming the Earth. The sources of human methane emissions are
- Livestock
- Fugitive emissions from the fossil fuel industry
- Crop production
- Fossil fuel combustion
- Waste management
- Other processes
Methane's Global Warming Potential
Methane has a much higher Global Warming Potential (GWP) than CO2. However, the effect lasts only for a relatively brief period (9 years on average), compared to hundreds of years for CO2. A reduction in emissions can cause a rapid decline in its atmospheric levels and climate impact.
Livestock
Livestock emits methane that is produced in the animals' digestive system. Most methane is emitted from the mouth during rumination. A much smaller amount of methane is emitted from the manure. Depending on how the manure is managed, i.e., wet or dry, more methane is emitted. Wet management leads to higher methane emissions than dry management. However, dry management also emits nitrous oxide (N2O), which is another potent greenhouse gas.
Fugitive emissions from fossil fuel industry
Fugitive methane emissions are from the intentional and accidental release of methane, which happens during the extraction, storage, and transportation processes in the fossil fuel industry. Examples are methane leaks during oil and gas handling, storage, transport, incomplete combustion, and many more. Also, methane is deliberately ventilated from mines during the extraction of coal.
Methane is a primary part of “gas”, also called “natural gas” or “fossil gas”. Natural gas is used, for example, for heating and electricity generation, whereby it emits CO2 during the combustion process. However, when natural gas leaks (unburned) it contains a lot of fugitive methane emissions.
Waste
Waste from landfills and wastewater produces a lot of methane when biodegradable material breaks down without oxygen.
Crop production
Crop production emissions are largely from rice cultivation, which generates large amounts of methane during plant growth. These emissions are from flooded paddies, which create the swamp-like environment of rice fields. There are agricultural techniques to reduce emissions significantly, like periodic drainage and aeration. Rice is the main staple for about half the world's population, and its emissions are a significant part of total human methane emissions.
Fuel combustion
Fuel combustion emissions are mostly from the incomplete combustion of fossil fuels. As mentioned before, natural gas consists largely of methane, and when the combustion does not happen completely, methane enters the atmosphere.
Other
Other human-induced methane emissions include industrial processes and product uses.
Wikipedia: Anthropogenic Sources of Atmospheric MethaneIPCC: AR6, 5.2.2.2 Anthropogenic CH4 emissions
Units and Measures
CH4 emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.
Wikipedia: MegatonneWikipedia: Global warming potential
About the Data
The last available year in all the emission datasets is 2023. Methane emissions come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.
The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.
Data Sources
PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.