Bolivia's Yearly Greenhouse Gas Emissions in CO₂ Equivalent
✨ Key Insights
Early Industrial Constraints
Bolivia's greenhouse gas emissions history is deeply intertwined with its socio-political events. The War of the Pacific in 1879, which resulted in Bolivia losing its coastal territory, significantly impacted its industrial development. This loss limited Bolivia's ability to engage in maritime trade and industrial expansion, which could have otherwise increased fossil fuel consumption and emissions. Consequently, early CO₂ emissions from fossil fuels remained minimal.
Agricultural and Land Use Changes
The Bolivian National Revolution of 1952 brought about significant land reforms, leading to increased CO₂ emissions due to deforestation and agricultural expansion. The redistribution of land from large estates to peasant farmers likely altered methane emissions from livestock, as more people engaged in subsistence farming and animal husbandry. The discovery of natural gas reserves in the 1960s further contributed to methane emissions, marking the beginning of Bolivia's natural gas industry.
Economic Growth and Industrialization
The economic stabilization plan of 1985 and the Hydrocarbon Law of 1996 spurred industrialization and economic growth, leading to increased CO₂ emissions from industrial activities and energy consumption. The nationalization of hydrocarbons in 2006 further boosted domestic energy production, impacting both methane and CO₂ emissions. The expansion of soybean cultivation around 2010 and increased livestock production by 2013 also contributed to rising emissions, driven by global demand for agricultural products.
Environmental Challenges
In recent years, Bolivia has faced significant environmental challenges, such as the Amazon rainforest fires in 2019. These fires released large amounts of CO₂ into the atmosphere, exacerbating global greenhouse gas emissions. The loss of forest cover also reduced the region's capacity to sequester carbon, highlighting the ongoing struggle between economic development and environmental conservation in Bolivia's emissions history.
Background
Greenhouse gas emissions from human activities are the main drivers of human-induced warming. In the scientific literature, human-induced emissions are often referred to as anthropogenic emissions.
- CO2 Fossil Fuels and Industry (CO2 FFI)
- CO2 Land-Use, Land-Use Change and Forestry (CO2 LULUCF)
- Methane (CH4)
- Moderate: above 2.5 tonnes
- Nitrous oxide (N2O)
- Fluorinated gases (F-gases)
Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.
Wikipedia: Global Warming PotentialTotal Historic Share
Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.
CO2 From Fossil Fuels and Industry
The sources are mostly fossil-fuel combustion emissions from coal, oil, and gas, as well as emissions from industrial processes such as cement production. Cement also absorbs CO2 out of the atmosphere through carbonation, which reduces emissions by about 0.8 Gt per year and is included here.
CO2 From Land-Use, Land-Use Change, and Forestry
The main driver of these emissions is deforestation, which includes logging and forest degradation, as well as other land-use change activities. The emissions also take into account the absorption of CO2 by processes that remove CO2 from the atmosphere, such as afforestation and reforestation. It is the net effect that is indicated here.
Methane (CH4)
Methane emissions are caused by human activities such as rearing livestock, agricultural practices, and fugitive fossil fuel emissions.
Nitrous Oxide (N2O)
Common sources of these emissions are fossil fuel emissions and the agricultural use of synthetic fertilizer and manure.
Fluorinated Gases (F-gases)
Fluorinated gases are a group of gases defined by UNFCCC: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3). Fluorinated gases are also known as halogenated gases.
Wikipedia: Greenhouse Gas EmissionsIPCC: Annual Report 6, 5.2.1 5.2 Historical Trends, Variability and Budgets of CO2, CH4 and N2O
Units and Measures
CO2-equivalent emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.
Wikipedia: MegatonneWikipedia: Global warming potential
About the Data
The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.
The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.
Data Sources
Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.
PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.