Qatar's Yearly Greenhouse Gas Emissions in CO₂ Equivalent
Key Insights
Late-Century Surge In CO2
Qatar's emissions were minimal for more than a century, then climbed rapidly from the late 1980s. Since the turn of the century the rise has accelerated, with fossil CO2 reaching around 130 megatonnes today. Just over half of the country's historic warming impact comes from these fossil sources. Gas-related CO2 drives this story, accounting for about three-quarters of fossil CO2 and showing a sharp step-up around 2010, followed by slower growth and another uptick since the early 2020s. Oil-related CO2 dipped in the mid-2010s but has risen again more recently.
Methane Shapes The Picture
Nearly half of Qatar's historic warming impact comes from methane. Emissions rose steadily from the 1960s alongside the expansion of fossil activities, peaking in the late 2000s and then easing slightly. Today they hover around 20 megatonnes. Fugitive methane is the dominant source and has been broadly stable to gently declining since the late 2000s, which has tempered its recent warming impact.
Small But Rising Others
Fluorinated gases have grown from near zero in the 1990s to around 4 megatonnes, while nitrous oxide remains small but has trended upward since the mid‑2000s; land-use emissions are negligible.
What Matters Now
The dominant sources are still rising: gas-related CO2 is edging up again, and total fossil CO2 remains on an upward trajectory. Stabilized or slightly lower methane helps, but bending overall emissions will require reversing growth in fossil CO2 while sustaining and deepening cuts in fugitive methane.
Background
Greenhouse gas emissions from human activities are the main drivers of human-induced warming. In the scientific literature, human-induced emissions are often referred to as anthropogenic emissions.
- CO2 Fossil Fuels and Industry (CO2 FFI)
- CO2 Land-Use, Land-Use Change and Forestry (CO2 LULUCF)
- Methane (CH4)
- Nitrous oxide (N2O)
- Fluorinated gases (F-gases)
Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.
Wikipedia: Global Warming PotentialTotal Historic Share
Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.
CO2 From Fossil Fuels and Industry
The sources are mostly fossil-fuel combustion emissions from coal, oil, and gas, as well as emissions from industrial processes such as cement production. Cement also absorbs CO2 out of the atmosphere through carbonation, which reduces emissions by about 0.8 Gt per year and is included here.
CO2 From Land-Use, Land-Use Change, and Forestry
The main driver of these emissions is deforestation, which includes logging and forest degradation, as well as other land-use change activities. The emissions also take into account the absorption of CO2 by processes that remove CO2 from the atmosphere, such as afforestation and reforestation. It is the net effect that is indicated here.
Methane (CH4)
Methane emissions are caused by human activities such as rearing livestock, agricultural practices, and fugitive fossil fuel emissions.
Nitrous Oxide (N2O)
Common sources of these emissions are fossil fuel emissions and the agricultural use of synthetic fertilizer and manure.
Fluorinated Gases (F-gases)
Fluorinated gases are a group of gases defined by UNFCCC: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3). Fluorinated gases are also known as halogenated gases.
Wikipedia: Greenhouse Gas EmissionsIPCC: Annual Report 6, 5.2.1 5.2 Historical Trends, Variability and Budgets of CO2, CH4 and N2O
Units and Measures
CO2-equivalent emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.
Wikipedia: MegatonneWikipedia: Global warming potential
About the Data
The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.
The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.
Data Sources
Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.
PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.