Senegal's Yearly Greenhouse Gas Emissions in CO₂ Equivalent
Key Insights
Long-Run Drivers And Scale
Senegal's historical warming impact is led by methane, contributing nearly half of the total since records began. Land-use CO2 adds roughly a quarter, while fossil-fuel CO2 and nitrous oxide make up most of the rest; fluorinated gases remain minimal. Over the full record, methane sums to roughly 700 megatonnes, land-use CO2 to nearly 550, and each of fossil CO2 and N2O to around 300, with F-gases near 20. This mix highlights a predominantly agricultural and land-based profile, with fossil emissions rising more recently.
Emissions Trajectories Across Sectors
Methane climbed from about 1-2 megatonnes a year early on, surged mid-century, then leveled off through the 1970s and early 1980s-when its warming impact eased-before rising steadily again since the mid‑1980s, driven mostly by livestock and crop production. Fossil‑fuel CO2 stayed low for decades but accelerated sharply since the late 2000s, led mainly by oil, reaching around 14 megatonnes per year today. Land‑use CO2 has been volatile-swinging between source and sink around the 1960s-1970s and showing large spikes-but is currently a modest source of a few megatonnes. Nitrous oxide has risen steadily since the post‑war era, with a noticeable uptick in the 2010s, largely from agriculture, now around 6 megatonnes per year.
Priorities For The Years Ahead
Today's trajectory shows methane, fossil‑fuel CO2, and nitrous oxide still rising, while land‑use CO2 varies but remains a source. Bending the curve will hinge on slowing methane growth from livestock and crops, curbing agricultural nitrous oxide, and reversing the rapid rise in oil‑related CO2, while stabilizing land‑use emissions to avoid spikes and preserve periods of net absorption.
Background
Greenhouse gas emissions from human activities are the main drivers of human-induced warming. In the scientific literature, human-induced emissions are often referred to as anthropogenic emissions.
- CO2 Fossil Fuels and Industry (CO2 FFI)
- CO2 Land-Use, Land-Use Change and Forestry (CO2 LULUCF)
- Methane (CH4)
- Nitrous oxide (N2O)
- Fluorinated gases (F-gases)
Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.
Wikipedia: Global Warming PotentialTotal Historic Share
Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.
CO2 From Fossil Fuels and Industry
The sources are mostly fossil-fuel combustion emissions from coal, oil, and gas, as well as emissions from industrial processes such as cement production. Cement also absorbs CO2 out of the atmosphere through carbonation, which reduces emissions by about 0.8 Gt per year and is included here.
CO2 From Land-Use, Land-Use Change, and Forestry
The main driver of these emissions is deforestation, which includes logging and forest degradation, as well as other land-use change activities. The emissions also take into account the absorption of CO2 by processes that remove CO2 from the atmosphere, such as afforestation and reforestation. It is the net effect that is indicated here.
Methane (CH4)
Methane emissions are caused by human activities such as rearing livestock, agricultural practices, and fugitive fossil fuel emissions.
Nitrous Oxide (N2O)
Common sources of these emissions are fossil fuel emissions and the agricultural use of synthetic fertilizer and manure.
Fluorinated Gases (F-gases)
Fluorinated gases are a group of gases defined by UNFCCC: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3). Fluorinated gases are also known as halogenated gases.
Wikipedia: Greenhouse Gas EmissionsIPCC: Annual Report 6, 5.2.1 5.2 Historical Trends, Variability and Budgets of CO2, CH4 and N2O
Units and Measures
CO2-equivalent emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.
Wikipedia: MegatonneWikipedia: Global warming potential
About the Data
The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.
The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.
Data Sources
Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.
PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.