Beta

🇸🇴 Somalia's Sources of CO₂ Emissions

Somalia's Sources of CO2 Emissions

✨ Key Insights

Early Developments and Emissions

Somalia's CO2 emissions history is deeply intertwined with its socio-economic developments. The establishment of the British Somaliland Protectorate in 1884 and the economic expansion in Italian Somaliland during the 1920s likely contributed to increased emissions due to land-use changes and deforestation. These colonial activities, including infrastructure development and mechanized farming, set the stage for a gradual rise in emissions.

Post-Independence Industrialization

The independence of Somalia in 1960 marked a new era of national development, with industrialization and urbanization efforts leading to increased CO2 emissions. The push for economic growth resulted in higher energy consumption and deforestation, contributing to a noticeable rise in emissions during this period. The Somali Livestock Development Program in 1974 further added to emissions, particularly methane, due to increased livestock numbers.

Impact of Conflict and Natural Disasters

The civil war and state collapse in 1991 had a profound impact on Somalia's emissions profile. While industrial emissions likely decreased, deforestation and land degradation increased as people relied more on wood for fuel. The 2004 tsunami and the 2011 drought and famine further exacerbated land-use changes, contributing to CO2 emissions. These events highlight the complex interplay between socio-political factors and environmental changes in shaping Somalia's emissions history.

Recent Trends and Urban Expansion

In recent years, Somalia has experienced significant urban expansion, particularly in Mogadishu. The rapid development of residential and commercial areas has led to increased CO2 emissions from construction and transportation. The 2020 locust infestation also contributed to emissions through land degradation and control efforts. These recent trends underscore the ongoing challenges Somalia faces in managing its emissions amidst socio-economic and environmental pressures.

Background

The chart shows a national breakdown by source of the yearly CO2 emissions from human activities and processes expressed in megatonnes. It is critical to know and track the sources of national CO2 emissions in order to understand their individual impacts on climate change.

The sources of human CO2 emissions are

  • CO2 From Fossil Fuels and Industry: coal, oil, gas combustion, other fossil processes
  • CO2 From Land-Use, Land-Use Change, and Forestry

Coal, oil and gas combustion

Fossil fuel CO2 emissions from the combustion of coal, oil and gas are emitted by processes in electricity generation, transport, industry, and the building sector. All processes can be linked to human activities. Examples include driving cars with combustion engines burning diesel or gas, or electric cars charged by electricity from a power plant that burns coal.

Other fossil processes

Fossil CO2 emissions from other processes include sources like cement manufacturing and production of chemicals and fertilizers. Cement also has an absorption factor highlighted in the absorption breakdown chart.

Land-use change

Human civilization emits CO2 by changing and managing its land. Those emissions come, for example, from deforestation, logging, forest degradation, harvest activities and shifting agriculture cultivation. Land-use change also absorbs considerable amounts of CO2, which is shown in the absorption breakdown chart. Land-use change emits more than it absorbs, so the net effect is still emissions, but less than for coal, oil and gas.

Wikipedia: Greenhouse Gas Emissions
Earth System Science Data: GCP 2020 paper: Section 2.2 Land-use change; Section 2.1 Fossil fuel emissions
IPCC: Annual Report 6, 5.2.1.1 Anthropogenic CO2 emissions

Units and Measures

CO2 emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.

Wikipedia: Megatonne
Wikipedia: Global warming potential

Climate Change Intelligence — Powered by You.

If you've found value in Climate Change Tracker, we'd really appreciate your donation. We rely on people like you to keep our platform running.

About the Data

The last available year is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change.

The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.