🇸🇸 South Sudan's Sources of CH₄ Emissions

South Sudan's Sources of CH4 Emissions

Key Insights

Methane Dominates Warming Impact

Methane accounts for just over half of South Sudan's overall warming impact. Emissions are led by livestock and crop production, which together make up roughly nine-tenths of the total. Since the late 1950s, national methane has risen overall, with agriculture shaping the long‑term trend.

Livestock’s Steady, Long-Term Climb

Livestock has driven the sustained increase. After negligible levels before the mid‑1950s, emissions rose through the late 20th century and accelerated from the late 1980s. They moved from low single digits in the 1970s to around 20 megatonnes today, showing a largely persistent upward trajectory.

Crop Production’s Rise and Ease

Crop production jumped around 1960, then grew gradually for decades, peaking in the mid‑2000s at the low teens. Since then, it has eased back to just under 10 megatonnes, indicating a slow, recent decline that partially offsets growth elsewhere.

Smaller Sources, Mixed Signals

Fugitive emissions inched up over many years before edging down slightly since the mid‑2010s. Waste has trended upward to around 2 megatonnes, while fuel combustion remains stable at well below 1 megatonne. Together they contribute only a minor share.

Action Priorities For Methane

Momentum is split: livestock is still rising, while crop production is trending down. Turning national methane downward will require reversing growth in livestock and sustaining-ideally accelerating-the recent decline in crop production. Smaller sources matter less but should continue to be monitored for incremental gains.

Background

The chart shows a national breakdown by source of the yearly methane (CH4) emissions from human activities expressed as weight in megatonnes (Mt). In the scientific literature, these are referred to as anthropogenic emissions. Human-induced methane emissions increase atmospheric methane, which is warming the Earth. The sources of human methane emissions are

  • Livestock
  • Fugitive emissions from the fossil fuel industry
  • Crop production
  • Fossil fuel combustion
  • Waste management
  • Other processes

Methane's Global Warming Potential

Methane has a much higher Global Warming Potential (GWP) than CO2. However, the effect lasts only for a relatively brief period (9 years on average), compared to hundreds of years for CO2. A reduction in emissions can cause a rapid decline in its atmospheric levels and climate impact.

Livestock

Livestock emits methane that is produced in the animals' digestive system. Most methane is emitted from the mouth during rumination. A much smaller amount of methane is emitted from the manure. Depending on how the manure is managed, i.e., wet or dry, more methane is emitted. Wet management leads to higher methane emissions than dry management. However, dry management also emits nitrous oxide (N2O), which is another potent greenhouse gas.

Fugitive emissions from fossil fuel industry

Fugitive methane emissions are from the intentional and accidental release of methane, which happens during the extraction, storage, and transportation processes in the fossil fuel industry. Examples are methane leaks during oil and gas handling, storage, transport, incomplete combustion, and many more. Also, methane is deliberately ventilated from mines during the extraction of coal.


Methane is a primary part of “gas”, also called “natural gas” or “fossil gas”. Natural gas is used, for example, for heating and electricity generation, whereby it emits CO2 during the combustion process. However, when natural gas leaks (unburned) it contains a lot of fugitive methane emissions.

Waste

Waste from landfills and wastewater produces a lot of methane when biodegradable material breaks down without oxygen.

Crop production

Crop production emissions are largely from rice cultivation, which generates large amounts of methane during plant growth. These emissions are from flooded paddies, which create the swamp-like environment of rice fields. There are agricultural techniques to reduce emissions significantly, like periodic drainage and aeration. Rice is the main staple for about half the world's population, and its emissions are a significant part of total human methane emissions.

Fuel combustion

Fuel combustion emissions are mostly from the incomplete combustion of fossil fuels. As mentioned before, natural gas consists largely of methane, and when the combustion does not happen completely, methane enters the atmosphere.

Other

Other human-induced methane emissions include industrial processes and product uses.

Wikipedia: Anthropogenic Sources of Atmospheric Methane
IPCC: AR6, 5.2.2.2 Anthropogenic CH4 emissions

Units and Measures

CH4 emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.

Wikipedia: Megatonne
Wikipedia: Global warming potential

About the Data

The last available year in all the emission datasets is 2023. Methane emissions come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.

The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.

Data Sources

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.

South Sudan's Sources of CH₄ Emissions