Beta

🇦🇪 United Arab Emirates' Sources of CO₂ Emissions

United Arab Emirates' Sources of CO2 Emissions

✨ Key Insights

Oil Discovery and Economic Boom

The discovery of oil in Abu Dhabi in 1962 marked a pivotal moment for the United Arab Emirates, setting the stage for a dramatic increase in CO₂ emissions. The subsequent formation of the UAE in 1971 and the oil price boom of 1973 further accelerated industrial activities and urbanization, leading to a significant rise in emissions. The 1970s saw a surge in emissions from oil and other fossil fuels, reflecting the rapid economic development and increased energy consumption during this period.

Industrial Expansion and Emission Growth

The completion of the Jebel Ali Free Zone in 1999 exemplifies the UAE's industrial expansion, contributing to increased CO₂ emissions. The 2000s continued this trend, with emissions from oil and gas rising sharply. Notably, the early 2000s saw some of the highest yearly increases in oil-related emissions, underscoring the country's reliance on fossil fuels for economic growth. However, the launch of Masdar City in 2006 signaled a shift towards sustainability, although initial construction activities temporarily increased emissions.

Transition to Clean Energy

In recent years, the UAE has made significant strides towards reducing its carbon footprint. The inauguration of the Shams 1 Solar Plant in 2012 and the operation of the Barakah Nuclear Plant in 2020 highlight the country's commitment to diversifying its energy sources. These initiatives are expected to offset fossil fuel-based emissions significantly. The UAE Energy Strategy 2050 further underscores this commitment, aiming to increase clean energy's share in the energy mix, ultimately reducing CO₂ emissions in the long term.

Background

The chart shows a national breakdown by source of the yearly CO2 emissions from human activities and processes expressed in megatonnes. It is critical to know and track the sources of national CO2 emissions in order to understand their individual impacts on climate change.

The sources of human CO2 emissions are

  • CO2 From Fossil Fuels and Industry: coal, oil, gas combustion, other fossil processes
  • CO2 From Land-Use, Land-Use Change, and Forestry

Coal, oil and gas combustion

Fossil fuel CO2 emissions from the combustion of coal, oil and gas are emitted by processes in electricity generation, transport, industry, and the building sector. All processes can be linked to human activities. Examples include driving cars with combustion engines burning diesel or gas, or electric cars charged by electricity from a power plant that burns coal.

Other fossil processes

Fossil CO2 emissions from other processes include sources like cement manufacturing and production of chemicals and fertilizers. Cement also has an absorption factor highlighted in the absorption breakdown chart.

Land-use change

Human civilization emits CO2 by changing and managing its land. Those emissions come, for example, from deforestation, logging, forest degradation, harvest activities and shifting agriculture cultivation. Land-use change also absorbs considerable amounts of CO2, which is shown in the absorption breakdown chart. Land-use change emits more than it absorbs, so the net effect is still emissions, but less than for coal, oil and gas.

Wikipedia: Greenhouse Gas Emissions
Earth System Science Data: GCP 2020 paper: Section 2.2 Land-use change; Section 2.1 Fossil fuel emissions
IPCC: Annual Report 6, 5.2.1.1 Anthropogenic CO2 emissions

Units and Measures

CO2 emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.

Wikipedia: Megatonne
Wikipedia: Global warming potential

Climate Change Intelligence — Powered by You.

If you've found value in Climate Change Tracker, we'd really appreciate your donation. We rely on people like you to keep our platform running.

About the Data

The last available year is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change.

The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.