This is the difference in the atmospheric CO2 of a given year compared to the previous year. We call this an ‘increase’ rather than a ‘change’ because in recent history, every year has had more CO2 in the atmosphere than the previous year. However, in the past there was sometimes a decrease, for example in the 1850s, which is why those values are negative. The yearly CO2 increase depends on the processes that emit CO2 into the atmosphere and absorb CO2 out of the atmosphere. The average lifetime of CO2 in the atmosphere is just over 400 years.
The Yearly Atmospheric CO2 Increase is critical because as long as it increases, the warming effect due to CO2 is also increasing.
The primary unit here is parts per million (ppm), which describes the increase in the concentration of atmospheric CO2 per year. The secondary unit here is gigatonnes, which describes the weight of the increase in atmospheric CO2 per year. We show this to be able to relate to emissions, which are commonly expressed in gigatonnes.
Wikipedia: Parts-per notationNot only is atmospheric CO2 increasing every year, the rate is also growing. There are large yearly fluctuations that are mostly due to the changes in CO2 absorbed by the Earth’s land mass. You can read about in the Yearly Absorption of Human-Induced CO2 Emissions.
Yearly Absorption of Human-Induced CO2 EmissionsIn the chart you can see a smooth line before the late 1950s and a fluctuating line thereafter. In reality, there were fluctuations before the 1950s too, but there are not enough measurements to confidently calculate the yearly fluctuations and that is why there is a smooth line highlighting the trend. In 1958 the direct continuous measurements of atmospheric CO2 started at Mauna Loa under Charles Keeling, after whom the Keeling Curve is named.
Wikipedia: Mauna Loa ObservatoryThe data since 1958 is from NOAA’s Global Monitoring Laboratory, which has a global network of air sampling sites to measure CO2. The atmospheric CO2 increase is calculated by taking the difference between consecutive deseasonalized December-January averages. For the current year we calculate the difference between the latest 12 months of available data and the 12 months before. If monthly data is not yet available, the daily estimate data is used to compare the available days with the same days of the previous year.
The values from 1850 to 1959 are taken from the Global Carbon Budget 2024.
Globally averaged marine surface annual mean growth rates data NOAA's Global Monitoring Laboratory
Credits: Ed Dlugokencky and Pieter Tans, NOAA/GML (gml.noaa.gov/ccgg/trends/)Update cycle: monthlyDelay: ~ 3 months
Globally averaged marine surface monthly mean data NOAA's Global Monitoring Laboratory
Credits: Ed Dlugokencky and Pieter Tans, NOAA/GML (gml.noaa.gov/ccgg/trends/)Update cycle: dailyDelay: ~ 2 days
Global Carbon Budget 2024 Global Carbon Budget
Credits: Friedlingstein et al., 2024, ESSDUpdate cycle: yearlyDelay: ~ 10 months after end of a year. Current year values estimates published in November.Reference: Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.