🇦🇴 Angola's Yearly Greenhouse Gas Emissions in CO₂ Equivalent

Angola's Yearly Greenhouse Gas Emissions in CO₂ Equivalent

Key Insights

Land Use Dominates History

Nearly half of Angola's historic climate impact comes from land‑use change. Emissions have swung widely: after modest levels in the late 19th century, land use briefly became a net absorber in the early 20th century, then surged through the mid‑century to around 100 megatonnes. They fell back sharply by the 1980s, climbed again from the mid‑1980s to the early 2010s to roughly 100, and have eased since the mid‑2010s to around 80. This volatility underscores how shifts in forests and land management have shaped Angola's long‑term emissions profile.

Methane’s Rise And Retreat

About two‑fifths of the historic impact is methane. Emissions grew steadily through the post‑war era, jumped rapidly from the late 1980s to the late 1990s, peaking near 60 megatonnes, and have trended down since to the low 40s. The warming impact from methane declined sharply as emissions stabilized and then fell. Within methane, fugitive emissions surged in the mid‑1990s before gradually receding, while crop‑related sources have risen more steadily. Other gases play smaller roles: CO2 from fossil fuels has been relatively modest-growing after 1990 to the mid‑2010s and easing since-while nitrous oxide increased over decades and is now fairly stable; fluorinated gases remain minimal but rising.

Priorities For The 2020s

Today, the dominant drivers are net land‑use change and methane. Land‑use emissions are falling from early‑2010s highs but remain substantial; faster declines would be needed to shift Angola's trajectory. Methane has edged down since its late‑1990s peak; maintaining this decline-especially by continuing the reduction in fugitive emissions and moderating growth in crop‑related sources-would further reduce near‑term warming. Focusing on these two sources offers the largest gains for bending Angola's overall emissions curve.

Background

Greenhouse gas emissions from human activities are the main drivers of human-induced warming. In the scientific literature, human-induced emissions are often referred to as anthropogenic emissions.

  • CO2 Fossil Fuels and Industry (CO2 FFI)
  • CO2 Land-Use, Land-Use Change and Forestry (CO2 LULUCF)
  • Methane (CH4)
  • Nitrous oxide (N2O)
  • Fluorinated gases (F-gases)

Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.

Wikipedia: Global Warming Potential

Total Historic Share

Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.

CO2 From Fossil Fuels and Industry

The sources are mostly fossil-fuel combustion emissions from coal, oil, and gas, as well as emissions from industrial processes such as cement production. Cement also absorbs CO2 out of the atmosphere through carbonation, which reduces emissions by about 0.8 Gt per year and is included here.

CO2 From Land-Use, Land-Use Change, and Forestry

The main driver of these emissions is deforestation, which includes logging and forest degradation, as well as other land-use change activities. The emissions also take into account the absorption of CO2 by processes that remove CO2 from the atmosphere, such as afforestation and reforestation. It is the net effect that is indicated here.

Methane (CH4)

Methane emissions are caused by human activities such as rearing livestock, agricultural practices, and fugitive fossil fuel emissions.

Nitrous Oxide (N2O)

Common sources of these emissions are fossil fuel emissions and the agricultural use of synthetic fertilizer and manure.

Fluorinated Gases (F-gases)

Fluorinated gases are a group of gases defined by UNFCCC: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3). Fluorinated gases are also known as halogenated gases.

Wikipedia: Greenhouse Gas Emissions
IPCC: Annual Report 6, 5.2.1 5.2 Historical Trends, Variability and Budgets of CO2, CH4 and N2O

Units and Measures

CO2-equivalent emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.

Wikipedia: Megatonne
Wikipedia: Global warming potential

About the Data

The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.

The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.

Angola's Yearly Greenhouse Gas Emissions in CO₂ Equivalent