Azerbaijan's Historic Contribution to Global Warming Since 1850
✨ Key Insights
High Per Capita Emissions
Azerbaijan's historic per capita emissions are rated as "high," with an average of 6.19 tonnes per capita per year. This reflects the country's significant contribution to global warming over the years. The high per capita emissions are largely driven by the country's extensive oil and gas industry, which has been a cornerstone of its economy since the late 19th century. The first oil boom in Baku in the 1870s marked the beginning of Azerbaijan's journey as a major fossil fuel producer, leading to increased CO₂ emissions from oil extraction and refining activities.
Significant Historic Impact
The total warming impact from Azerbaijan's historic emissions amounts to 4,411.27 megatonnes of CO₂-equivalent. This substantial figure is a result of the country's long-standing reliance on fossil fuels, particularly oil and natural gas. Key events such as the World War II oil production surge and the expansion of the natural gas industry in the 1960s further contributed to the rise in emissions. The development of the Shah Deniz gas field and the Southern Gas Corridor in recent years have also played a role in maintaining high levels of methane emissions.
Global Responsibility and Share
Azerbaijan's share of global historic emissions stands at 0.12%, highlighting its role in contributing to global warming. While this percentage may seem small, it underscores the importance of shared responsibility in addressing climate change. The country's industrialization and urbanization efforts, particularly during the 1970s, led to increased energy consumption and CO₂ emissions. As Azerbaijan continues to develop, it faces the challenge of balancing economic growth with sustainable practices to reduce its environmental impact.
Background
Historic Per Capita Emissions
Historic per capita emissions are a crucial long-period (since 1850), population-weighted (accounting for changing population size) indicator. It shows the contribution of greenhouse gas emissions of a nation per capita per year to the current warming.
The rating scale is:
- Extremely High: above 10 tonnes per capita per year
- Very High: above 7.5 tonnes
- High: above 5 tonnes
- Moderate: above 2.5 tonnes
- Low: above 0 tonnes
- Negative Emissions: under 0
Historically, we don't expect any nation to reach negative emissions. Current warming, or warming targets, like 1.5 °C and 1.7 °C are all based on the fact that there have been human-induced greenhouse gas emissions and there will be some more. It is clear, however, that some nations have had incredibly high historic contributions per capita.
Total Historic Impact
This is the total amount of CO2, CH4, N2O, and F-Gases emissions of a nation from 1850 till 2023 (last available year in the data) expressed in megatonnes of CO2-equivalents. The gases have different atmospheric lifetimes (decay) and warming effects, for this reason we use the GWP100 (100 year time horizon method) to calculate the global warming potential of N2O and F-Gases to express in CO2-equivalents. For CH4, which is a short-term gas, we use the GWP* method to express the historic impact in CO2-equivalents.
Wikipedia: Global Warming PotentialTotal Historic Share
This is a nation's total historic share of global emissions and its contribution to global warming. It is an indicator of historic responsibility. All nations share the responsibility to ensure that developing nations do not copy and repeat the behavior of nations with high historic greenhouse gas emissions, they should not buy into old unsustainable fossil-fuels-based technology, land-use, and infrastructure, rather foster a sustainable and cleaner development.
About the Data
The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases. Population data are also from Global Carbon Project where available, however, for many nations it doesn't have historic population going back to 1850. Those historic gaps are filled with population data from Our World in Data.
The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.
Data Sources
Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.
PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.
Our World in Data Population - Our World in Data
Update cycle: YearlyDelay: 7 monthsCredits: HYDE (2023); Gapminder (2022); UN WPP (2024) – with major processing by Our World in Data