Beta

🇦🇿 Azerbaijan's Yearly Greenhouse Gas Emissions in CO₂ Equivalent

Azerbaijan's Yearly Greenhouse Gas Emissions in CO₂ Equivalent

✨ Key Insights

Early Industrialization and Oil Boom

Azerbaijan's journey in greenhouse gas emissions began in the late 19th century with the first oil boom in Baku. This period marked a significant rise in CO₂ emissions due to increased oil extraction and refining activities. The establishment of the Azerbaijan Democratic Republic in 1918 further accelerated industrial activities, contributing to a steady increase in emissions.

World War II and Soviet Era

During World War II, Azerbaijan's oil production surged to support the Soviet war effort, leading to a substantial increase in CO₂ emissions. The post-war era saw continued industrialization, with the 1960s marking the expansion of the natural gas industry, contributing to increased methane emissions. The 1970s brought rapid industrialization and urbanization, further elevating CO₂ emissions.

Post-Independence and Economic Restructuring

Azerbaijan's independence from the Soviet Union in 1991 marked a new chapter in its emissions history. Economic restructuring and foreign investment in the oil and gas sector led to a significant rise in CO₂ and CH₄ emissions. The "Contract of the Century" in 1994 and the completion of the Baku-Tbilisi-Ceyhan pipeline in 2006 further boosted emissions due to increased extraction and export activities.

Recent Developments and Emission Trends

In recent years, the expansion of the Shah Deniz gas field and the development of the Southern Gas Corridor have contributed to increased methane emissions. Despite these developments, Azerbaijan has seen fluctuations in its emissions, with notable decreases in CO₂ emissions in the mid-1990s and early 2000s, reflecting the complex interplay of economic, industrial, and environmental factors shaping the country's emissions profile.

Background

Greenhouse gas emissions from human activities are the main drivers of human-induced warming. In the scientific literature, human-induced emissions are often referred to as anthropogenic emissions.

  • CO2 Fossil Fuels and Industry (CO2 FFI)
  • CO2 Land-Use, Land-Use Change and Forestry (CO2 LULUCF)
  • Methane (CH4)
  • Moderate: above 2.5 tonnes
  • Nitrous oxide (N2O)
  • Fluorinated gases (F-gases)

Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.

Wikipedia: Global Warming Potential

Total Historic Share

Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.

CO2 From Fossil Fuels and Industry

The sources are mostly fossil-fuel combustion emissions from coal, oil, and gas, as well as emissions from industrial processes such as cement production. Cement also absorbs CO2 out of the atmosphere through carbonation, which reduces emissions by about 0.8 Gt per year and is included here.

CO2 From Land-Use, Land-Use Change, and Forestry

The main driver of these emissions is deforestation, which includes logging and forest degradation, as well as other land-use change activities. The emissions also take into account the absorption of CO2 by processes that remove CO2 from the atmosphere, such as afforestation and reforestation. It is the net effect that is indicated here.

Methane (CH4)

Methane emissions are caused by human activities such as rearing livestock, agricultural practices, and fugitive fossil fuel emissions.

Nitrous Oxide (N2O)

Common sources of these emissions are fossil fuel emissions and the agricultural use of synthetic fertilizer and manure.

Fluorinated Gases (F-gases)

Fluorinated gases are a group of gases defined by UNFCCC: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3). Fluorinated gases are also known as halogenated gases.

Wikipedia: Greenhouse Gas Emissions
IPCC: Annual Report 6, 5.2.1 5.2 Historical Trends, Variability and Budgets of CO2, CH4 and N2O

Units and Measures

CO2-equivalent emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.

Wikipedia: Megatonne
Wikipedia: Global warming potential

Climate Change Intelligence — Powered by You.

If you've found value in Climate Change Tracker, we'd really appreciate your donation. We rely on people like you to keep our platform running.

About the Data

The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.

The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.