Belgium's Yearly Greenhouse Gas Emissions in CO₂ Equivalent
✨ Key Insights
Industrial Revolution and Early Growth
Belgium's journey through industrialization began in the mid-19th century, marking a significant rise in CO₂ emissions. The expansion of the Industrial Revolution around 1865 saw increased coal mining and usage, propelling emissions upwards. This period marked a shift from agrarian economies to industrial powerhouses, with coal being the primary energy source.
World Wars and Emission Fluctuations
The two World Wars had a profound impact on Belgium's emissions. World War I caused a temporary dip in emissions due to disrupted industrial activities. However, the post-war reconstruction period in the 1920s saw emissions rebound as industrial activities resumed. Similarly, World War II led to a temporary reduction, followed by a post-war industrial boom that significantly increased emissions.
Energy Transitions and Policy Shifts
The mid-20th century brought about notable changes in Belgium's energy landscape. The introduction of natural gas in the 1950s and the oil crisis of 1973 prompted shifts towards more efficient energy sources, impacting CO₂ emissions. The Chernobyl disaster in 1986 further influenced energy policies, leading to increased investment in renewable energy.
Modern Efforts and Global Commitments
In recent decades, Belgium has made significant strides in reducing emissions through international commitments and policy changes. The Kyoto Protocol in 1997 and the Paris Agreement in 2015 marked pivotal moments in Belgium's climate policy, driving efforts to reduce emissions. The COVID-19 pandemic in 2020 temporarily reduced emissions, highlighting the impact of decreased economic activity on environmental outcomes.
Background
Greenhouse gas emissions from human activities are the main drivers of human-induced warming. In the scientific literature, human-induced emissions are often referred to as anthropogenic emissions.
- CO2 Fossil Fuels and Industry (CO2 FFI)
- CO2 Land-Use, Land-Use Change and Forestry (CO2 LULUCF)
- Methane (CH4)
- Moderate: above 2.5 tonnes
- Nitrous oxide (N2O)
- Fluorinated gases (F-gases)
Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.
Wikipedia: Global Warming PotentialTotal Historic Share
Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.
CO2 From Fossil Fuels and Industry
The sources are mostly fossil-fuel combustion emissions from coal, oil, and gas, as well as emissions from industrial processes such as cement production. Cement also absorbs CO2 out of the atmosphere through carbonation, which reduces emissions by about 0.8 Gt per year and is included here.
CO2 From Land-Use, Land-Use Change, and Forestry
The main driver of these emissions is deforestation, which includes logging and forest degradation, as well as other land-use change activities. The emissions also take into account the absorption of CO2 by processes that remove CO2 from the atmosphere, such as afforestation and reforestation. It is the net effect that is indicated here.
Methane (CH4)
Methane emissions are caused by human activities such as rearing livestock, agricultural practices, and fugitive fossil fuel emissions.
Nitrous Oxide (N2O)
Common sources of these emissions are fossil fuel emissions and the agricultural use of synthetic fertilizer and manure.
Fluorinated Gases (F-gases)
Fluorinated gases are a group of gases defined by UNFCCC: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3). Fluorinated gases are also known as halogenated gases.
Wikipedia: Greenhouse Gas EmissionsIPCC: Annual Report 6, 5.2.1 5.2 Historical Trends, Variability and Budgets of CO2, CH4 and N2O
Units and Measures
CO2-equivalent emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.
Wikipedia: MegatonneWikipedia: Global warming potential
About the Data
The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.
The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.
Data Sources
Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.
PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.