Cambodia's Sources of CO2 Emissions
✨ Key Insights
Early Influences and Independence
Cambodia's CO2 emissions history reflects its socio-political changes and economic development. The establishment of the French Protectorate in 1863 marked the beginning of infrastructure development, which likely increased the use of coal and wood for energy. However, significant emissions from fossil fuels did not emerge until much later. After gaining independence from France in 1953, Cambodia experienced changes in land use and agricultural practices, contributing to CO2 emissions through deforestation and land conversion.
Conflict and Regime Change
The Cambodian Civil War starting in 1970 and the subsequent Khmer Rouge regime led to significant disruptions. These events likely caused deforestation and land degradation, contributing to CO2 emissions. The radical agrarian policies of the Khmer Rouge, including forced relocations and infrastructure destruction, further exacerbated these emissions. However, reliable data from this period is scarce, making it challenging to quantify the exact impact.
Economic Growth and Urbanization
The early 2000s marked a period of significant economic growth and urbanization in Cambodia, leading to increased energy consumption from fossil fuels. This growth is reflected in the rising CO2 emissions from coal and oil. The development of infrastructure and urban areas further contributed to these emissions. The shift towards hydropower in 2009 aimed to meet growing energy demands, potentially reducing CO2 emissions from fossil fuels, although the overall impact on greenhouse gases depends on the balance with CH4 emissions from hydropower projects.
Commitment to Climate Goals
In 2015, Cambodia's commitment to the Paris Agreement signaled a shift towards reducing greenhouse gas emissions and increasing climate resilience. Plans to increase forest cover and improve energy efficiency could mitigate CO2 emissions. The effectiveness of these commitments will depend on their implementation and enforcement, as Cambodia continues to navigate its path towards sustainable development.
Background
The chart shows a national breakdown by source of the yearly CO2 emissions from human activities and processes expressed in megatonnes. It is critical to know and track the sources of national CO2 emissions in order to understand their individual impacts on climate change.
The sources of human CO2 emissions are
- CO2 From Fossil Fuels and Industry: coal, oil, gas combustion, other fossil processes
- CO2 From Land-Use, Land-Use Change, and Forestry
Coal, oil and gas combustion
Fossil fuel CO2 emissions from the combustion of coal, oil and gas are emitted by processes in electricity generation, transport, industry, and the building sector. All processes can be linked to human activities. Examples include driving cars with combustion engines burning diesel or gas, or electric cars charged by electricity from a power plant that burns coal.
Other fossil processes
Fossil CO2 emissions from other processes include sources like cement manufacturing and production of chemicals and fertilizers. Cement also has an absorption factor highlighted in the absorption breakdown chart.
Land-use change
Human civilization emits CO2 by changing and managing its land. Those emissions come, for example, from deforestation, logging, forest degradation, harvest activities and shifting agriculture cultivation. Land-use change also absorbs considerable amounts of CO2, which is shown in the absorption breakdown chart. Land-use change emits more than it absorbs, so the net effect is still emissions, but less than for coal, oil and gas.
Wikipedia: Greenhouse Gas EmissionsEarth System Science Data: GCP 2020 paper: Section 2.2 Land-use change; Section 2.1 Fossil fuel emissions
IPCC: Annual Report 6, 5.2.1.1 Anthropogenic CO2 emissions
Units and Measures
CO2 emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.
Wikipedia: MegatonneWikipedia: Global warming potential
About the Data
The last available year is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change.
The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.
Data Sources
Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.