Czechia's Progress and Recent Impact
✨ Key Insights
High Per Capita Emissions
Czechia's recent greenhouse gas emissions per capita are rated as "very high," with each person responsible for approximately 9.2 tonnes of CO2-equivalent emissions annually. This level is significantly above the global average and highlights the country's substantial contribution to global warming on a per-person basis. The high per capita emissions are primarily driven by fossil fuel consumption, particularly coal, which accounts for over half of the fossil CO2 emissions. This reliance on coal has historical roots, dating back to the Industrial Revolution and further solidified during the communist regime's focus on heavy industry.
Declining Total Emissions
Despite the high per capita emissions, Czechia's total greenhouse gas emissions have been on a downward trend over the past decade, decreasing by an average of 2.5% per year. This decline is largely attributed to a reduction in fossil fuel emissions, as the country has been transitioning towards cleaner energy sources. The shift began in earnest after the Velvet Revolution and continued with the Czech Republic's accession to the European Union in 2004, which brought stricter environmental regulations. The expansion of renewable energy sources, such as wind and solar power, has also played a role in reducing emissions.
Global Emissions Share
Czechia's share of global emissions stands at 0.1751%, a relatively small fraction when compared to major emitters like China and the United States. However, as part of the collective group of smaller emitters, Czechia's emissions still contribute to the global total. The country's efforts to reduce its emissions are crucial in the broader context of international climate goals. The ongoing transition to renewable energy and adherence to EU environmental standards are positive steps towards further reducing its global emissions share.
Background
Recent per Capita Emissions
The Recent per Capita Emissions are a crucial indicator of a nation's greenhouse gas emissions. They are a fair measure for comparing the emissions of nations, taking into account the size of their populations.
Because any greenhouse gas emissions above 0 cause warming, the per capita emissions shouldn't be judged against the global average; they should be compared based on how far they are above 0. Therefore, our rating scale is:
- Extremely High: above 10 tonnes per capita per year
- Very High: above 7.5 tonnes
- High: above 5 tonnes
- Moderate: above 2.5 tonnes
- Low: above 0 tonnes
- Negative Emissions: under 0
The per capita emissions should be close to zero for each country, indicated here by the green & low areas.
Last Year Emissions
This is the total amount of CO2, CH4, N2O, and F-Gases emissions of a nation in 2023 (last available year in the data) expressed in megatonnes of CO2-equivalents. The gases have different atmospheric lifetimes (decay) and warming effects, for this reason, we use the GWP100 (100 year time horizon method) to calculate the global warming potential of CH4, N2O, and F-Gases to express them in CO2-equivalents.
Wikipedia: Global Warming PotentialLast Year Share
This is a nation's share of the global emissions in 2023 (last available year in the data). For many countries this value can be quite small, especially when compared to nations like United States or China. It is easy and dangerous to jump to the conclusion that small shares of emissions don't matter. They matter as a group. Even small emitters can account for a significant amount of total emissions. Consider the following examples:
- 24 nations, each between 0.5 and 1.5% of the total emissions, make up 20% of the total emissions.
- 27 nations, each between 0.5 and 2% of the total emissions, make up 25% of the total emissions.
- 162 nations with a share below 0.5% make up 15% of the total.
- 3 nations, make 44% of the total emissions: China, United States and India. However, China and India together have a population of about 2.9 billion.
Per Capita Emissions are therefore the most crucial indicator to represent the impact of a nation regardless of its size.
Yearly Emissions Trend
This is a nation's trend per year over the last 10 years. It is a good indicator of the trajectory of national emissions and can be used as a simple framework to judge a nation's trend vs. international goals:
- Stop warming around 1.5 °C: All nations together, and each nation, should drop emissions by 17% per year — 8,000 Megatonnes of CO2 Equivalent per Year.
- To achieve Net Zero in 2050 and to stop warming at ~1.7 °C: All nations should together, and each nation, should drop emissions by 4% per year — 2,100 Megatonnes of CO2 Equivalent per Year.
- Additionally, to return warming to pre-industrial levels almost all human-induced CO2 has to be taken out of the atmosphere.
About the Data
The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases. Population data are also from Global Carbon Project where available, however, for many nations it doesn't have historic population going back to 1850. Those historic gaps are filled with population data from Our World in Data.
The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.
Data Sources
Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.
PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.
Our World in Data Population - Our World in Data
Update cycle: YearlyDelay: 7 monthsCredits: HYDE (2023); Gapminder (2022); UN WPP (2024) – with major processing by Our World in Data