Beta

🇮🇶 Iraq's Historic Contribution to Global Warming Since 1850

Iraq's Historic Contribution to Global Warming Since 1850

✨ Key Insights

Extremely High Per Capita Impact

Iraq's historic greenhouse gas emissions have resulted in an extremely high per capita impact, averaging 10.37 tonnes per person per year. This places Iraq among the nations with the highest historic contributions to global warming on a per capita basis. The discovery of the Kirkuk oil field in 1927 marked the beginning of large-scale oil extraction, significantly increasing CO₂ emissions. The nationalization of Iraq's oil industry in 1972 further accelerated oil production and export, contributing to the country's high per capita emissions.

Oil Industry's Role in Emissions

The oil industry has been a major driver of Iraq's greenhouse gas emissions. The nationalization of the oil industry allowed Iraq to expand its oil extraction and export activities, leading to increased CO₂ emissions. The expansion of oil production facilities and increased domestic consumption of oil for energy and transportation further elevated emissions. The impact of these activities is evident in the high per capita emissions rating, reflecting Iraq's significant contribution to global warming.

Methane and Other Greenhouse Gases

Methane emissions, primarily from livestock and fugitive emissions from oil extraction, have also played a significant role in Iraq's warming impact. The use of the GWP* method for methane highlights the dynamic nature of these emissions, with periods of rapid increase and decrease. Additionally, emissions of N2O and F-gases, although smaller in magnitude, have contributed to Iraq's overall greenhouse gas emissions profile. The combination of these gases underscores the complexity of Iraq's historic emissions and their impact on global warming.

Background

Historic Per Capita Emissions

Historic per capita emissions are a crucial long-period (since 1850), population-weighted (accounting for changing population size) indicator. It shows the contribution of greenhouse gas emissions of a nation per capita per year to the current warming.


The rating scale is:

  • Extremely High: above 10 tonnes per capita per year
  • Very High: above 7.5 tonnes
  • High: above 5 tonnes
  • Moderate: above 2.5 tonnes
  • Low: above 0 tonnes
  • Negative Emissions: under 0

Historically, we don't expect any nation to reach negative emissions. Current warming, or warming targets, like 1.5 °C and 1.7 °C are all based on the fact that there have been human-induced greenhouse gas emissions and there will be some more. It is clear, however, that some nations have had incredibly high historic contributions per capita.

Total Historic Impact

This is the total amount of CO2, CH4, N2O, and F-Gases emissions of a nation from 1850 till 2023 (last available year in the data) expressed in megatonnes of CO2-equivalents. The gases have different atmospheric lifetimes (decay) and warming effects, for this reason we use the GWP100 (100 year time horizon method) to calculate the global warming potential of N2O and F-Gases to express in CO2-equivalents. For CH4, which is a short-term gas, we use the GWP* method to express the historic impact in CO2-equivalents.

Wikipedia: Global Warming Potential

Total Historic Share

This is a nation's total historic share of global emissions and its contribution to global warming. It is an indicator of historic responsibility. All nations share the responsibility to ensure that developing nations do not copy and repeat the behavior of nations with high historic greenhouse gas emissions, they should not buy into old unsustainable fossil-fuels-based technology, land-use, and infrastructure, rather foster a sustainable and cleaner development.

Climate Change Intelligence — Powered by You.

If you've found value in Climate Change Tracker, we'd really appreciate your donation. We rely on people like you to keep our platform running.

About the Data

The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases. Population data are also from Global Carbon Project where available, however, for many nations it doesn't have historic population going back to 1850. Those historic gaps are filled with population data from Our World in Data.

The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.

Our World in Data Population - Our World in Data
Update cycle: YearlyDelay: 7 monthsCredits: HYDE (2023); Gapminder (2022); UN WPP (2024) – with major processing by Our World in Data