🇰🇪 Kenya's Historic Contribution to Global Warming Since 1850

Kenya's Historic Contribution to Global Warming Since 1850

Key Insights

Limited Global Share And Impact

Kenya's historic emissions have led to a warming impact of around 7,400 megatonnes of CO2-equivalent-about 0.2% of the global total. This small share underscores limited historic responsibility, even as national emission patterns have evolved.

Moderate Per Capita Footprint

Kenya's population-weighted average is roughly 3.3 tonnes per capita per year, which falls in the moderate range on the dashboard's scale. That means Kenyans' long-run contribution per person has been far lower than in high-emitting countries.

Methane Dominates The Picture

Methane accounts for about 55% of Kenya's warming impact. Emissions grew gradually through the mid-20th century and accelerated since the early 2000s, moving from the mid-20s to just over 50 megatonnes per year. Livestock is the dominant source, with a smaller but notable share from fugitive emissions.

Land-Use And Other Gases

Land-use CO2 contributes around a quarter of Kenya's impact. It climbed through the mid-1900s, peaked in the late 1980s at roughly 50 megatonnes per year, and has declined since to low single digits by the 2020s. Nitrous oxide adds just over a tenth of the total and has risen steadily-especially after 2000-mostly from agriculture. Fossil CO2 is a smaller share overall, but has trended upward since around 2010 toward just over 20 megatonnes per year. Fluorinated gases remain very small, though they have edged up from near zero since the early 2000s.

Actionable Priorities For Kenya

Given this profile, priorities lie with the biggest sources: methane from livestock and fugitive emissions, land-use CO2, and agricultural nitrous oxide. Sustaining the land-use CO2 decline, curbing livestock methane, reducing fugitive releases, and improving nitrogen use efficiency would deliver the largest benefits while supporting a low-emission development path.

Background

Historic Per Capita Emissions

Historic per capita emissions are a crucial long-period (since 1850), population-weighted (accounting for changing population size) indicator. It shows the contribution of greenhouse gas emissions of a nation per capita per year to the current warming.


The rating scale is:

  • Extremely High: above 10 tonnes per capita per year
  • Very High: above 7.5 tonnes
  • High: above 5 tonnes
  • Moderate: above 2.5 tonnes
  • Low: above 0 tonnes
  • Negative Emissions: under 0

Historically, we don't expect any nation to reach negative emissions. Current warming, or warming targets, like 1.5 °C and 1.7 °C are all based on the fact that there have been human-induced greenhouse gas emissions and there will be some more. It is clear, however, that some nations have had incredibly high historic contributions per capita.

Total Historic Impact

This is the total amount of CO2, CH4, N2O, and F-Gases emissions of a nation from 1850 till 2023 (last available year in the data) expressed in megatonnes of CO2-equivalents. The gases have different atmospheric lifetimes (decay) and warming effects, for this reason we use the GWP100 (100 year time horizon method) to calculate the global warming potential of N2O and F-Gases to express in CO2-equivalents. For CH4, which is a short-term gas, we use the GWP* method to express the historic impact in CO2-equivalents.

Wikipedia: Global Warming Potential

Total Historic Share

This is a nation's total historic share of global emissions and its contribution to global warming. It is an indicator of historic responsibility. All nations share the responsibility to ensure that developing nations do not copy and repeat the behavior of nations with high historic greenhouse gas emissions, they should not buy into old unsustainable fossil-fuels-based technology, land-use, and infrastructure, rather foster a sustainable and cleaner development.

About the Data

The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases. Population data are also from Global Carbon Project where available, however, for many nations it doesn't have historic population going back to 1850. Those historic gaps are filled with population data from Our World in Data.

The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.

Our World in Data Population - Our World in Data
Update cycle: YearlyDelay: 7 monthsCredits: HYDE (2023); Gapminder (2022); UN WPP (2024) – with major processing by Our World in Data

Kenya's Historic Contribution to Global Warming Since 1850