Beta

🇲🇱 Mali's Sources of CO₂ Emissions

Mali's Sources of CO2 Emissions

✨ Key Insights

Colonial and Post-Independence Shifts

Mali's CO₂ emissions history reflects significant shifts in land use and agricultural practices. The establishment of French colonial rule in 1898 marked the beginning of structured agricultural practices, which likely contributed to increased CO₂ levels due to deforestation and land conversion. Following independence in 1960, Mali focused on developing agriculture, setting the stage for future emissions growth, although industrialization remained minimal.

Droughts and Agricultural Expansion

The severe Sahel drought in 1973 led to changes in land use, temporarily reducing emissions from livestock but potentially increasing CO₂ emissions from land-use changes as communities adapted. The introduction of irrigation projects in 1982 further increased emissions due to land conversion and machinery use. The expansion of the cotton industry around 2000 also contributed to emissions through deforestation and land conversion.

Recent Trends and Renewable Initiatives

In recent decades, Mali's CO₂ emissions have seen fluctuations, with significant increases in emissions from land-use changes in the 1990s. Political instability in 2012 temporarily disrupted agricultural activities, likely reducing emissions. However, the introduction of renewable energy initiatives in 2015 marked a shift towards sustainable practices, aiming to reduce reliance on fossil fuels. The COVID-19 pandemic in 2020 led to temporary reductions in emissions due to decreased economic activities, although the overall impact was small given Mali's limited industrialization.

Background

The chart shows a national breakdown by source of the yearly CO2 emissions from human activities and processes expressed in megatonnes. It is critical to know and track the sources of national CO2 emissions in order to understand their individual impacts on climate change.

The sources of human CO2 emissions are

  • CO2 From Fossil Fuels and Industry: coal, oil, gas combustion, other fossil processes
  • CO2 From Land-Use, Land-Use Change, and Forestry

Coal, oil and gas combustion

Fossil fuel CO2 emissions from the combustion of coal, oil and gas are emitted by processes in electricity generation, transport, industry, and the building sector. All processes can be linked to human activities. Examples include driving cars with combustion engines burning diesel or gas, or electric cars charged by electricity from a power plant that burns coal.

Other fossil processes

Fossil CO2 emissions from other processes include sources like cement manufacturing and production of chemicals and fertilizers. Cement also has an absorption factor highlighted in the absorption breakdown chart.

Land-use change

Human civilization emits CO2 by changing and managing its land. Those emissions come, for example, from deforestation, logging, forest degradation, harvest activities and shifting agriculture cultivation. Land-use change also absorbs considerable amounts of CO2, which is shown in the absorption breakdown chart. Land-use change emits more than it absorbs, so the net effect is still emissions, but less than for coal, oil and gas.

Wikipedia: Greenhouse Gas Emissions
Earth System Science Data: GCP 2020 paper: Section 2.2 Land-use change; Section 2.1 Fossil fuel emissions
IPCC: Annual Report 6, 5.2.1.1 Anthropogenic CO2 emissions

Units and Measures

CO2 emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.

Wikipedia: Megatonne
Wikipedia: Global warming potential

Climate Change Intelligence — Powered by You.

If you've found value in Climate Change Tracker, we'd really appreciate your donation. We rely on people like you to keep our platform running.

About the Data

The last available year is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change.

The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.