Thailand's Progress and Recent Impact
✨ Key Insights
High Per Capita Emissions
Thailand's recent per capita greenhouse gas emissions stand at 6.133 tonnes per person per year, placing the country in the "high" category. This level of emissions reflects the nation's industrial activities and energy consumption patterns. The discovery of natural gas in the Gulf of Thailand in 1978 and the subsequent shift from oil to natural gas for electricity generation have contributed to these emissions. Additionally, the expansion of the livestock industry in the mid-1980s has led to increased methane emissions, further influencing the per capita figures.
Significant Total Emissions
In 2023, Thailand's total greenhouse gas emissions amounted to 440.356 megatonnes of CO2-equivalents, representing 0.7983% of the global total. This figure underscores the country's role in the global emissions landscape, despite its relatively small share. The industrial boom in the Eastern Seaboard during the early 1990s significantly increased CO2 emissions from fossil fuel combustion, contributing to the current total. The introduction of biofuels in 2003 has helped mitigate some emissions, but the overall impact remains substantial.
Declining Emissions Trend
Over the past decade, Thailand has experienced a slight decline in its total emissions, with a yearly percentage change of -0.73%. This trend is driven by efforts to reduce emissions, such as the commitment to the Paris Agreement in 2015, which aimed to cut emissions by 20-25% by 2030. The reduction in CO2 emissions from land use and land-use change, as well as the decrease in methane emissions from agriculture, have contributed to this downward trend. However, the increase in F-gases highlights the ongoing challenges in achieving significant reductions.
Background
Recent per Capita Emissions
The Recent per Capita Emissions are a crucial indicator of a nation's greenhouse gas emissions. They are a fair measure for comparing the emissions of nations, taking into account the size of their populations.
Because any greenhouse gas emissions above 0 cause warming, the per capita emissions shouldn't be judged against the global average; they should be compared based on how far they are above 0. Therefore, our rating scale is:
- Extremely High: above 10 tonnes per capita per year
- Very High: above 7.5 tonnes
- High: above 5 tonnes
- Moderate: above 2.5 tonnes
- Low: above 0 tonnes
- Negative Emissions: under 0
The per capita emissions should be close to zero for each country, indicated here by the green & low areas.
Last Year Emissions
This is the total amount of CO2, CH4, N2O, and F-Gases emissions of a nation in 2023 (last available year in the data) expressed in megatonnes of CO2-equivalents. The gases have different atmospheric lifetimes (decay) and warming effects, for this reason, we use the GWP100 (100 year time horizon method) to calculate the global warming potential of CH4, N2O, and F-Gases to express them in CO2-equivalents.
Wikipedia: Global Warming PotentialLast Year Share
This is a nation's share of the global emissions in 2023 (last available year in the data). For many countries this value can be quite small, especially when compared to nations like United States or China. It is easy and dangerous to jump to the conclusion that small shares of emissions don't matter. They matter as a group. Even small emitters can account for a significant amount of total emissions. Consider the following examples:
- 24 nations, each between 0.5 and 1.5% of the total emissions, make up 20% of the total emissions.
- 27 nations, each between 0.5 and 2% of the total emissions, make up 25% of the total emissions.
- 162 nations with a share below 0.5% make up 15% of the total.
- 3 nations, make 44% of the total emissions: China, United States and India. However, China and India together have a population of about 2.9 billion.
Per Capita Emissions are therefore the most crucial indicator to represent the impact of a nation regardless of its size.
Yearly Emissions Trend
This is a nation's trend per year over the last 10 years. It is a good indicator of the trajectory of national emissions and can be used as a simple framework to judge a nation's trend vs. international goals:
- Stop warming around 1.5 °C: All nations together, and each nation, should drop emissions by 17% per year — 8,000 Megatonnes of CO2 Equivalent per Year.
- To achieve Net Zero in 2050 and to stop warming at ~1.7 °C: All nations should together, and each nation, should drop emissions by 4% per year — 2,100 Megatonnes of CO2 Equivalent per Year.
- Additionally, to return warming to pre-industrial levels almost all human-induced CO2 has to be taken out of the atmosphere.
About the Data
The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases. Population data are also from Global Carbon Project where available, however, for many nations it doesn't have historic population going back to 1850. Those historic gaps are filled with population data from Our World in Data.
The Key Insights paragraph was generated using a large language model (LLM) using a structured approach to improve the accuracy. This included separating the context generation from the interpretation and narrative.
Data Sources
Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.
PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.
Our World in Data Population - Our World in Data
Update cycle: YearlyDelay: 7 monthsCredits: HYDE (2023); Gapminder (2022); UN WPP (2024) – with major processing by Our World in Data