🇺🇬 Uganda's Yearly Greenhouse Gas Emissions in CO₂ Equivalent

Uganda's Yearly Greenhouse Gas Emissions in CO₂ Equivalent

Key Insights

Long-Term Profile At A Glance

Uganda's historic emissions are shaped mainly by methane and land use. Methane accounts for about half of the country's total climate impact, land-use change roughly two-fifths, and nitrous oxide about a tenth. CO2 from fossil fuels has been a small contributor historically, while fluorinated gases are negligible.

Land Use Peaked Then Fell

Land-use emissions rose through the first half of the 20th century and peaked in the early 1960s at around 50 megatonnes. Since then they have trended downward for decades, declining to single digits today. This long decline marks a major transition from the earlier period of high land-use emissions.

Methane And Nitrous Oxide Rising

Methane emissions grew gradually through the mid‑20th century, then accelerated from the late 1960s and especially since the turn of the century, reaching around 40 megatonnes in recent years. As emissions sped up, their warming impact climbed even faster. Livestock is the dominant source of methane. Nitrous oxide has also risen steadily since the early 1990s to around 10 megatonnes, largely from agriculture.

Actionable Focus Going Forward

Today's trajectory is mixed: land-use emissions are declining, while methane and nitrous oxide continue to rise. The most effective steps are to bend the curve on livestock methane and agricultural nitrous oxide, while sustaining land stewardship to keep land-use emissions falling. CO2 from fossil fuels remains a few megatonnes but has grown since the 2000s, so managing its growth will help avoid adding new pressure to the total.

Background

Greenhouse gas emissions from human activities are the main drivers of human-induced warming. In the scientific literature, human-induced emissions are often referred to as anthropogenic emissions.

  • CO2 Fossil Fuels and Industry (CO2 FFI)
  • CO2 Land-Use, Land-Use Change and Forestry (CO2 LULUCF)
  • Methane (CH4)
  • Nitrous oxide (N2O)
  • Fluorinated gases (F-gases)

Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.

Wikipedia: Global Warming Potential

Total Historic Share

Emissions from all different gases are expressed in CO2-equivalent units to make it possible to compare the relative emissions from these different gases. CO2-equivalents are calculated using the global warming potentials of the respective gases, in this case using a 100-year time horizon.

CO2 From Fossil Fuels and Industry

The sources are mostly fossil-fuel combustion emissions from coal, oil, and gas, as well as emissions from industrial processes such as cement production. Cement also absorbs CO2 out of the atmosphere through carbonation, which reduces emissions by about 0.8 Gt per year and is included here.

CO2 From Land-Use, Land-Use Change, and Forestry

The main driver of these emissions is deforestation, which includes logging and forest degradation, as well as other land-use change activities. The emissions also take into account the absorption of CO2 by processes that remove CO2 from the atmosphere, such as afforestation and reforestation. It is the net effect that is indicated here.

Methane (CH4)

Methane emissions are caused by human activities such as rearing livestock, agricultural practices, and fugitive fossil fuel emissions.

Nitrous Oxide (N2O)

Common sources of these emissions are fossil fuel emissions and the agricultural use of synthetic fertilizer and manure.

Fluorinated Gases (F-gases)

Fluorinated gases are a group of gases defined by UNFCCC: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3). Fluorinated gases are also known as halogenated gases.

Wikipedia: Greenhouse Gas Emissions
IPCC: Annual Report 6, 5.2.1 5.2 Historical Trends, Variability and Budgets of CO2, CH4 and N2O

Units and Measures

CO2-equivalent emissions are expressed in the total weight in megatonnes per year. 1 Megatonne is equal to 1 million tonnes.

Wikipedia: Megatonne
Wikipedia: Global warming potential

About the Data

The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases.

The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.

Uganda's Yearly Greenhouse Gas Emissions in CO₂ Equivalent