🇿🇲 Zambia's Progress and Recent Impact

Zambia's Progress and Recent Impact

Key Insights

Overall Emissions Snapshot

Zambia's latest total greenhouse gas emissions are about 98.9 megatonnes of CO2-equivalents, representing roughly 0.17% of the global total. On a per person basis, emissions are around 4.6 tonnes per capita per year, which places the country in the moderate range. While moderate by the given scale, this is still well above the level consistent with stopping additional warming, which requires per capita emissions to approach zero.

What Drives The Total

The emissions profile is dominated by carbon dioxide from land use and land-use change, accounting for just over half of the national total and showing a gradual decline over the past decade. Fossil CO2 is a smaller share but has been increasing, led by coal-related emissions, with oil also contributing. Methane forms about a fifth of the total, largely from crop production and livestock, with additional contributions from fugitive emissions and fuel combustion. Nitrous oxide is a smaller but meaningful component, chiefly linked to agricultural activities. F-gases are near negligible and trending down.

Recent Trend And Context

Over the last ten years, Zambia's overall emissions have edged down slightly, with an average annual reduction of about 0.4%. This pace is well below the approximate 4% per year decline consistent with a global net-zero-by-2050 pathway, indicating that recent land-use improvements are partly offset by growth in fossil CO2 and methane sources.

Actionable Priorities For Zambia

Prioritize deepening the decline in land-use CO2 while preventing reversals. Curb the rise in fossil CO2 by targeting coal first and slowing growth in oil-related emissions. Tackle agricultural methane and nitrous oxide through measures focused on major crop and livestock sources, and reduce fugitive methane. Keep F-gases low. With moderate per capita emissions, rapid, substantial cuts in the largest and fastest-growing sectors are essential.

Background

Recent per Capita Emissions

The Recent per Capita Emissions are a crucial indicator of a nation's greenhouse gas emissions. They are a fair measure for comparing the emissions of nations, taking into account the size of their populations.

Because any greenhouse gas emissions above 0 cause warming, the per capita emissions shouldn't be judged against the global average; they should be compared based on how far they are above 0. Therefore, our rating scale is:

  • Extremely High: above 10 tonnes per capita per year
  • Very High: above 7.5 tonnes
  • High: above 5 tonnes
  • Moderate: above 2.5 tonnes
  • Low: above 0 tonnes
  • Negative Emissions: under 0

The per capita emissions should be close to zero for each country, indicated here by the green & low areas.

Last Year Emissions

This is the total amount of CO2, CH4, N2O, and F-Gases emissions of a nation in 2023 (last available year in the data) expressed in megatonnes of CO2-equivalents. The gases have different atmospheric lifetimes (decay) and warming effects, for this reason, we use the GWP100 (100 year time horizon method) to calculate the global warming potential of CH4, N2O, and F-Gases to express them in CO2-equivalents.

Wikipedia: Global Warming Potential

Last Year Share

This is a nation's share of the global emissions in 2023 (last available year in the data). For many countries this value can be quite small, especially when compared to nations like United States or China. It is easy and dangerous to jump to the conclusion that small shares of emissions don't matter. They matter as a group. Even small emitters can account for a significant amount of total emissions. Consider the following examples:

  • 24 nations, each between 0.5 and 1.5% of the total emissions, make up 20% of the total emissions.
  • 27 nations, each between 0.5 and 2% of the total emissions, make up 25% of the total emissions.
  • 162 nations with a share below 0.5% make up 15% of the total.
  • 3 nations, make 44% of the total emissions: China, United States and India. However, China and India together have a population of about 2.9 billion.

Per Capita Emissions are therefore the most crucial indicator to represent the impact of a nation regardless of its size.

Yearly Emissions Trend

This is a nation's trend per year over the last 10 years. It is a good indicator of the trajectory of national emissions and can be used as a simple framework to judge a nation's trend vs. international goals:

  • Stop warming around 1.5 °C: All nations together, and each nation, should drop emissions by 17% per year — 8,000 Megatonnes of CO2 Equivalent per Year.
  • To achieve Net Zero in 2050 and to stop warming at ~1.7 °C: All nations should together, and each nation, should drop emissions by 4% per year — 2,100 Megatonnes of CO2 Equivalent per Year.
  • Additionally, to return warming to pre-industrial levels almost all human-induced CO2 has to be taken out of the atmosphere.

About the Data

The last available year in all the emission datasets is 2023. CO2 emissions data is from the Global Carbon Project. It contains national CO2 emissions from fossil sources and land-use change. Emissions from CH4, N2O and F-gases come from the PRIMAP-Hist dataset. It is a rich dataset that combines several published sources to create a historical emissions time series for various greenhouse gases. Population data are also from Global Carbon Project where available, however, for many nations it doesn't have historic population going back to 1850. Those historic gaps are filled with population data from Our World in Data.

The Key Insights paragraph was created using a large language model (LLM) in combination with our data, historic events, and a structured approach for best accuracy by separating the context generation from the interpretation and narrative.

Data Sources

Global Carbon Budget 2024 Global Carbon Budget
Update cycle: yearlyDelay: ~ 10 months after the end of the year. Current year values are estimated and published in November.Credits: Friedlingstein et al., 2024, ESSD. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Arneth, A., Arora, V., Bates, N. R., Becker, M., Bellouin, N., Berghoff, C. F., Bittig, H. C., Bopp, L., Cadule, P., Campbell, K., Chamberlain, M. A., Chandra, N., Chevallier, F., Chini, L. P., Colligan, T., Decayeux, J., Djeutchouang, L., Dou, X., Duran Rojas, C., Enyo, K., Evans, W., Fay, A., Feely, R. A., Ford, D. J., Foster, A., Gasser, T., Gehlen, M., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Kato, E., Keeling, R. F., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Lauvset, S. K., Lefèvre, N., Liu, Z., Liu, J., Ma, L., Maksyutov, S., Marland, G., Mayot, N., McGuire, P., Metzl, N., Monacci, N. M., Morgan, E. J., Nakaoka, S.-I., Neill, C., Niwa, Y., Nützel, T., Olivier, L., Ono, T., Palmer, P. I., Pierrot, D., Qin, Z., Resplandy, L., Roobaert, A., Rosan, T. M., Rödenbeck, C., Schwinger, J., Smallman, T. L., Smith, S., Sospedra-Alfonso, R., Steinhoff, T., Sun, Q., Sutton, A. J., Séférian, R., Takao, S., Tatebe, H., Tian, H., Tilbrook, B., Torres, O., Tourigny, E., Tsujino, H., Tubiello, F., van der Werf, G., Wanninkhof, R., Wang, X., Yang, D., Yang, X., Yu, Z., Yuan, W., Yue, X., Zaehle, S., Zeng, N., and Zeng, J.: Global Carbon Budget 2024, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-519, in review, 2024.

PRIMAP-hist The PRIMAP-hist national historical emissions time series (1750-2023)
Update cycle: Every few monthsDelay: Less than 1 yearCredits: Gütschow, Johannes; Busch, Daniel; Pflüger, Mika (2024): The PRIMAP-hist national historical emissions time series (1750-2023) v2.6. Zenodo.

Our World in Data Population - Our World in Data
Update cycle: YearlyDelay: 7 monthsCredits: HYDE (2023); Gapminder (2022); UN WPP (2024) – with major processing by Our World in Data

Zambia's Progress and Recent Impact